• Title/Summary/Keyword: Ground grouting

Search Result 380, Processing Time 0.03 seconds

Deformation analyses during subway shield excavation considering stiffness influences of underground structures

  • Zhang, Zhi-guo;Zhao, Qi-hua;Zhang, Meng-xi
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.117-139
    • /
    • 2016
  • Previous studies for soil movements induced by tunneling have primarily focused on the free soil displacements. However, the stiffness of existing structures is expected to alter tunneling-induced ground movements, the sheltering influences for underground structures should be included. Furthermore, minimal attention has been given to the settings for the shield machine's operation parameters during the process of tunnels crossing above and below existing tunnels. Based on the Shanghai railway project, the soil movements induced by an earth pressure balance (EPB) shield considering the sheltering effects of existing tunnels are presented by the simplified theoretical method, the three-dimensional finite element (3D FE) simulation method, and the in-situ monitoring method. The deformation prediction of existing tunnels during complex traversing process is also presented. In addition, the deformation controlling safety measurements are carried out simultaneously to obtain the settings for the shield propulsion parameters, including earth pressure for cutting open, synchronized grouting, propulsion speed, and cutter head torque. It appears that the sheltering effects of underground structures have a great influence on ground movements caused by tunneling. The error obtained by the previous simplified methods based on the free soil displacements cannot be dismissed when encountering many existing structures.

Critical face pressure and backfill pressure of shield TBM considering surface settlements of saturated clayey ground (쉴드 TBM 굴진에 따른 포화 점성토 지반의 침하거동을 고려한 한계 굴진면압과 한계 뒤채움압)

  • Kim, Kiseok;Oh, Ju-Young;Lee, Hyobum;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.433-452
    • /
    • 2018
  • The shield tunneling method can minimize surface settlements by preventing the deformation of tunnel face and tunnel intrados due to tunnel excavation. For this purpose, it is very important to control the operating conditions of shield TBM. The face pressure and backfill pressure for tail void grouting should be the most important and immediate measure not only to restrain surface settlement, but also to influence the effective stress and pore water pressure around the circumstance of tunnel during excavation. The reaction of the ground to the application of face pressure and backfill pressure relies on the stiffness and permeability of ground. Especially, the reaction of saturated clayey ground formations, which shows the time-dependent deformation, is different from the permeable ground. Hence, in this paper it was investigated how the TBM operating conditions, ground stiffness, and permeability impact on the surface settlement of saturated clayey ground. For this purpose, a series of parametric studies were carried out by means of the stress-pore water pressure coupled FE analysis. The results show that the settlement of soft clayey ground is divided into the immediate settlement and consolidation settlement. Especially, the consolidation settlement depends on the ground stiffness and permeability. In addition, the existence of critical face pressure and backfill pressure was identified. The face pressure and backfill pressure above the critical value may cause an unexpected increase in the ground settlement.

A Case Study on the NATM Tunnel Excavation under the Soft Soil Ground Condition by Back Analysis Method (역해석 기법에 의한 연약지반 NATM터널 굴착사례 연구)

  • JO, Hyun;PARK, Jong-In;LEE, Ki-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.71-81
    • /
    • 2000
  • For the construction of NATM tunnel, it is required a design based on the accurate soil condition from soil investigation. However, in practice, it often designs tunnels without fully understanding the condition. Especially, when soft soil comes up, or ground water breaks out suddenly on the construction, it needs to secure the stability of tunnel by appropriate reinforcing construction according to the results of measurements on field superlatively reflecting the faced situation. This report reviews the mostsuitable stability of tunnel in the construction of soft soil of tunnel by numerical analysis using FDM after re-evaluated the soil properties through back analysis using the results of measurements to simulate abruptly occurred deformation. And applying steel pipe grouting row by row on the wall and the low part of tunnel and also applying the construction method of temporary invert after excavation of the upper part of tunnel, the excavation of soft soil tunnel secured the structural stability of tunnel has been completed.

  • PDF

Case study of volume loss estimation during slurry tbm tunnelling in weathered zone of granite rock (화강풍화대를 통과하는 슬러리 TBM의 체적손실 산정에 대한 사례 연구)

  • Park, Hyunku;Oh, Ju-Young;Chang, Seokbue;Lee, Seungbok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.61-74
    • /
    • 2016
  • This paper presents a case study on the ground settlement and volume loss estimation for slurry pressure balanced shield TBM tunnelling in weathered zone of granite rock. Settlement at each stage of shield tunnelling was analyzed and the volume losses and settlement trough factors were estimated from observations. In addition, using the existing volume loss evaluation method in literature, volume losses were estimated considering ground properties and actual driving parameters. Most of ground settlement occurred during passage of shield skin passage and after backfill grouting, and the measured total volume loss and trough curves appeared to coincide with literature. Shield and tail loss obtained from field measurement were found to be around 90% and 60% of the predictions, where tail loss indicated larger deviation than shield loss.

A Study on the Behavior Characteristics of Soft Clay Ground by C.G.S Method (C.G.S공법을 적용한 연약점토지반에서의 거동특성에 관한 연구)

  • 천병식;여유현
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.307-323
    • /
    • 2003
  • In this study the pilot test of C.G.S (Compaction Grouting System) as injection method by low slump mortar was performed and the results were analyzed in order to find out the application of this method to the soft ground and the effect of settlement restraint. The site for pilot test is adjacent to apartments supported by pile foundations. Sand drain method was performed previously as countermeasures against settlement, but settlement occurs continuously because this ground is very soft. Site investigations such as SPT, CPT and vane shear test were performed to determine the characteristics of ground improvement after the installation of C.G.S. Field measurements were performed on purpose to find out the displacement of ground during the installation of C.G.S. From the results of this study, C.G.S method can be optimized by the control of radius, space, depth, injection material and injection pressure. C.G.S improves soft ground with radial consolidation of adjacent soft ground. Considering that increase of N value to about 3, C.G.S can be considered as an effective method to increase the bearing capacity as well as constrain the settlement of soft ground. It is also expected to be economic and effective in the improvement of ground when it is used in applicable sites.

Engineering Characteristic of High Density Expansion Materials for Structure Restoration Technology (기초침하복원을 위한 급속 팽창재료의 공학적 특성에 관한 연구)

  • Shin, Eun-Chul;Cha, Yong-In
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.2
    • /
    • pp.1-5
    • /
    • 2008
  • The differential settlement on ordinary concrete buildings and paved roads are often occurred and which caused the failure of structure. The grouting method can be used for correcting the settlement of the structure. However, the grouting method has a disadvantage like that it takes a long time period to get a desired strength, and it is not a continuous in the phase of reinforced effect. In this paper, as an injecting material called GPCON to complement disadvantage, it is estimated about the characteristic that has a high-density expansion. With the changing of ground conditions and amount of injection, the change of physical strength on compression, the stability against chemical material are studied through the filming of SEM. The physical strength with compression is developed to high strength due to mixing with other material. It is not react with most of the material on chemical conditions except the component of alcohol. Through the SEM test. it is confirmed that the strength of material was increased as formation is being densified.

  • PDF

Pullout Capacity of Screw Anchor Piles Using Field Pull-out Tests (현장인발시험을 통한 Screw Anchor Pile의 인발저항특성)

  • Yoo, Chung-Sik;Kim, Dae-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.5-16
    • /
    • 2014
  • This paper presents the results of an investigation into the pullout characteristics of screw anchor pile using field pullout tests. A series of field pullout tests were performed on screw anchor piles with different geometric characteristics such as shaft and screw diameters. The results indicated that screw anchor piles exhibited significantly higher pullout capacities compared with the same diameter piles without screw. Also observed is that the set-up effect and the grouting significantly increase pullout capacities, although the magnitude of the increase depends on the ground condition. In addition the applicability of prediction methods for helical pile pullout capacity to screw anchor piles was also examined. The results are presented in such a way that the pullout characteristics of screw anchor piles with different installation conditions can be identified. Practical implications of the findings are discussed.

Experimental Study on Cement Cohesion Reduction Effect of Grout Mixer with Vibration Filter (진동필터가 설치된 그라우트 믹서의 시멘트 응집 저감 효과에 대한 실험적 연구)

  • Hwang, Sung-Pil;Jeoung, Jae-Hyeung;Kim, Chang-Yong;Lee, Woo-Je
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • Grouting is reinforcement or cutoff method which uses the hardening agent which is typically represented by portland cement and injected into the ground or the structure. When mixing the cement in powder form with water, the particles tend to cohere each other. Once they cohered, the particle size tends to become larger while injection efficiency becomes lower. This study, in a bid to reduce the cohesion of cement, the screen was set inside the grout mixer so that the cement particles are separated while vibrating them. To validate the effect of vibration screen, comparison test was conducted by using ordinary portland cement, slag cement and micro cement. Viscosity test, bleeding test and grain-size analysis indicated that the characteristics varied significantly after passing through the vibration filter. It is expected that the vibration filter installed inside the grout mixer will reduce the cement cohesion when mixing with water.

A Study on Assessment Techniques of Levee Safety (하천제방의 안전성 평가기법 연구)

  • Yoon Jong-Ryeol;Kim Jin-Man;Choi Bong-Hyuck
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.111-116
    • /
    • 2005
  • 2-D and 3-D resistivity surveys were carried out at the Deok-In2 levee during the period of arid and rainy seasons to assess the waterproof effectiveness of sheet pile and grouting sections and detect the location of pipings. Inverted resistivity sections clearly indicated the boundaries of sheet pile and grouting sections and the locations of pipings observed at the ground surface. Besides, GPR survey was carried out to verify the rear cavity of culvert in levee which is thought to be the major cause of levee breakdown, But the quality of GPR data was very poor due to the steel reinforcements buried in the culvert. Because it is not easy to apply various geophysical surveys upon concrete structures, newly designed hydraulic response test was proposed to assess the continuity of rear cavity of culvert in this study.

  • PDF

Effect of Viscosity and Clogging on Grout Penetration Characteristics (점도 변화와 폐색 현상을 고려한 그라우트재의 침투 특성)

  • Kim, Jong-Sun;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.414-423
    • /
    • 2006
  • Many construction projects adopt grouting technology to prevent the leakage of groundwater or to improve the shear strength of the ground. Recognition as a feasible field procedure dates back to 1925, Since then, developments and field use have increased rapidly. According to improvement of grout materials, theoretical study on grout penetration characteristics is demanded. Fluid of grout always tends to flow from higher hydraulic potential to lower and the motion of grout is also a function of formation permeability. Viscosity of grout is changed by chemical action while grout moves through pores. Due to the increment of viscosity, permeability is decreased. Permeability is also reduced by grout particle deposits to the soil aggregates. In this thesis, characteristics of new cement grout material that is developed recently is studied: injectable volume of new grout material is tested in two different sizes of sands, and the method to calculate injectable volume of grout is suggested with consideration of change in viscosity and clogging phenomena. The calculated values are compared with injection test results. Viscosity of new grout material is found to be an exponential function of time. And lumped parameter $\theta$ of new grout material to be used for assessing deposition characteristics is estimated by comparing deposit theory with injection test results considering different soil types and different injection pressure.

  • PDF