• Title/Summary/Keyword: Ground Surface

Search Result 3,139, Processing Time 0.034 seconds

Automatic Installation and Verification of Ground Control Points for Practical Application of Drone-based Surface Image Velocimeter (드론 기반 표면영상유속계의 실용적 적용을 위한 자동 표정점 설치와 검증)

  • Hwang, Jeong-Geun;Yu, Kwonkyu;Bae, In Hyuk;Lee, Han Seung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.69-69
    • /
    • 2017
  • 최근 여러 분야에서 드론에 대한 관심도가 높아짐에 따라, 하천분야에서도 다양한 연구에 드론이 활용하고 있다. 드론관련 기술의 발전으로 GPS와 같은 첨단 기술이 탑재되어 사용자에게 여러가지 정보를 제공하며, 조작 또한 간단하여 누구나 쉽게 활용할 수 있다. 그리고 무엇보다도 사람이 접근하기 힘든 지역을 쉽게 촬영할 수 있다는 큰 장점을 가지고 있다. 본 연구의 목적은 드론을 기반으로 표면영상유속측정법을 적용시켜 하천의 표면유속을 효율적으로 측정하는 것이다. 표면영상유속측정법은 카메라로 촬영된 영상을 이용하여 표면유속을 도출하기 때문에 촬영된 영상이 무엇보다도 중요하다. 하지만 드론으로 촬영된 영상들은 아무리 정지비행을 잘하더라도 필연적으로 영상에 흔들림이 존재한다. 이를 해결하기 위해 본 연구에서는 흔들린 영상에 대하여 형태 정합법에 의해 보정을 하였으며, 이는 가장 핵심적인 기술이라 할 수 있다. 형태 정합법에 의한 영상 보정 과정은 고정된 표정점을 영상에서 추적한 뒤, 기준 영상의 표정점과 보정 영상의 표정점이 일치하도록 보정하였다. 영상 보정 후 영상 처리와 분석프로그램을 통하여 유속을 도출한다. 기존의 표면영상유속측정법에서는 표정점을 설치한 후 각 표정점마다 측량을 실시하여 좌표를 측정하였다. 이는 한국건설기술연구원 안동하천실험센터와 같이 이상적인 실험을 진행할 수 있는 환경에서는 문제가 없다. 하지만 실제 하천에서 표면유속측정 시 하천의 폭, 주변 환경 등의 영향으로 측량작업에 많은 어려움이 있다. 이를 해결하기 위해 본 연구에서는 Arduino와 GPS센서를 이용하여 표정점을 구성하였다. Arduino와 GPS 센서를 이용하면 각 표정점들의 좌표를 노트북에서 실시간으로 자동으로 확인할 수 있다. GPS 센서의 측정 오차에 따라 관측 오차가 다소 존재하지만, 실제 측량을 할 때와는 비교할 수 없을 정도로 신속하게 표정점의 좌표를 구할 수 있다. 이를 바탕으로 실험 하천에 대해 적용한 결과 기존의 방법에 비하여 간편하고 빠르게 표면유속측정을 수행할 수 있었으며, 표면유속측정값 또한 만족스러운 결과를 얻을 수 있었다.

  • PDF

Studies on the Mulberry Graftages V. Survival and Regrowth of Lifted Mulberry (Morus alba L.) Graftages after Exposure to Air. (뽕나무 접목묘에 관한 연구 V. 방치일수가 활착 및 생육에 미치는 영향)

  • 이원주;송인규;최영철
    • Journal of Sericultural and Entomological Science
    • /
    • v.32 no.1
    • /
    • pp.1-4
    • /
    • 1990
  • The resistance against drying of mulberry (Morus alba L.) graftages lifted in the fall and spring was examined by measuring water loss, survival, and regrowth. The graftages were exposed on the ground an4 covered with 2 sheets of straw mat for 0, 1, 3, 6, 10, and 15 days. 1. Temperatures in the mat ranged from 13 to -6.5$^{\circ}C$ in fall and 24 to -2.8$^{\circ}C$ in spring. Relative humidity was 37 to 100% in fall and 20 to 100% in spring. 2. Water loss from the graftages was less than 10% after 10 days exposure in fall, whereas there was 9.8% loss with 1 day exposure in spring. 3. Six days exposure in the spring caused the root hairs to dry and the root surface to become wrinkled longitudinally and turn yellowish-red. 4. Maximum exposure which allowed 100% survival and regrowth after planting was 6 days in fall and 3 days in spring under 2 sheets of straw mat.

  • PDF

Development and Assessment of Specific and High Sensitivity Reverse Transcription Nested Polymerase Chain Reaction Method for the Detection of Aichivirus A Monitoring in Groundwater (지하수 중 Aichivirus A 모니터링을 위한 특이적 및 고감도 이중 역전사 중합효소연쇄반응 검출법 개발 및 평가)

  • Bae, Kyung Seon;Kim, Jin-Ho;Lee, Siwon;Lee, Jin-Young;You, Kyung-A
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.190-198
    • /
    • 2021
  • Human Aichivirus (Aichivirus A; AiV-A) is a positive-sense single-strand RNA non-enveloped virus that has been detected worldwide in various water environments including sewage, river, surface, and ground over the past decade. To develop a method with excellent sensitivity and specificity for AiV-A diagnosis from water environments such as groundwater, a combination capable of reverse transcription (RT)-nested polymerase chain reaction (PCR) was developed based on existing reported and newly designed primers. A selective method was applied to evaluate domestic drinking groundwater samples. Thus, a procedure was devised to select and subsequently identify RT-nested PCR primer sets that can successfully detect and identify AiV-A from groundwater samples. The findings will contribute to developing a better monitoring system to detect AiV-A contamination in water environments such as groundwater.

Source Mechanism Analysis and Simplified Modeling for Rockburst (록버스트 발생기구 분석과 단순화 모델링)

  • Choi, Byung-Hee;Oh, Se-Wook;Kim, Hyunwoo;Jung, Yong-Bok
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.1-14
    • /
    • 2021
  • Rockburst is a sudden and violent failure of rock. During the failure process, excess energy is liberated as seismic energy, which in turn causes the surrounding rock mass to vibrate. The level of the ground vibration can reach a magnitude of over 4.5 in the Richter local scale. Thus, a rockburst can cause not only injury to persons, but also damage to both underground workings and surface structures. In this paper the source mechanism of rockburst is analyzed based mainly on the two reports of the Canadian Rockburst Research Program (CRRP). A simplified LS-DYNA modeling is also performed to identify the tensile failure patterns occurring in the remaining rock mass right after blasting in mine stope. The configuration of the simplified model will probably be useful in small-scale laboratory tests for investigating the source mechanism of rockburst.

Use of large-scale shake table tests to assess the seismic response of a tunnel embedded in compacted sand

  • Zhou, Hao;Qin, Xiaoyang;Wang, Xinghua;Liang, Yan
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.655-665
    • /
    • 2018
  • Shield tunnels are widely used throughout the world. However, their seismic performance has not been well studied. This paper focuses on the seismic response of a large scale model tunnel in compacted sand. A 9.3 m long, 3.7 m wide and 2.5 m high rigid box was filled with sand so as to simulate the sandy soil surrounding the tunnel. The setup was excited on a large-scale shake table. The model tunnel used was a 1:8 scaled model with a cross-sectional diameter of 900 mm. The effective shock absorbing layer (SAL) on the seismic response of the model tunnel was also investigated. The thickness of the tunnel lining is 60 mm. The earthquake motion recorded from the Kobe earthquake waves was used. The ground motions were scaled to have the same peak accelerations. A total of three peak accelerations were considered (i.e., 0.1 g, 0.2 g and 0.4 g). During the tests, the strain, acceleration and soil pressure on the surface of the tunnel were measured. In order to investigate the effect of shock absorbing layer on the dynamic response of the sand- tunnel system, two tunnel models were set up, one with and one without the shock absorbing layer of foam board were used. The results shows the longitudinal direction acceleration of the model tunnel with a shock absorbing layer were lower than those of model tunnel without the shock absorbing layer, Which indicates that the shock absorbing layer has a beneficial effect on the acceleration reduction. In addition, the shock absorbing layer has influence on the hoop strain and earth pressure of the model tunnel, this the effect of shock absorbing layer to the model tunnel will be discussed in the paper.

Numerical evaluation of gamma radiation monitoring

  • Rezaei, Mohsen;Ashoor, Mansour;Sarkhosh, Leila
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.807-817
    • /
    • 2019
  • Airborne Gamma Ray Spectrometry (AGRS) with its important applications such as gathering radiation information of ground surface, geochemistry measuring of the abundance of Potassium, Thorium and Uranium in outer earth layer, environmental and nuclear site surveillance has a key role in the field of nuclear science and human life. The Broyden-Fletcher-Goldfarb-Shanno (BFGS), with its advanced numerical unconstrained nonlinear optimization in collaboration with Artificial Neural Networks (ANNs) provides a noteworthy opportunity for modern AGRS. In this study a new AGRS system empowered by ANN-BFGS has been proposed and evaluated on available empirical AGRS data. To that effect different architectures of adaptive ANN-BFGS were implemented for a sort of published experimental AGRS outputs. The selected approach among of various training methods, with its low iteration cost and nondiagonal scaling allocation is a new powerful algorithm for AGRS data due to its inherent stochastic properties. Experiments were performed by different architectures and trainings, the selected scheme achieved the smallest number of epochs, the minimum Mean Square Error (MSE) and the maximum performance in compare with different types of optimization strategies and algorithms. The proposed method is capable to be implemented on a cost effective and minimum electronic equipment to present its real-time process, which will let it to be used on board a light Unmanned Aerial Vehicle (UAV). The advanced adaptation properties and models of neural network, the training of stochastic process and its implementation on DSP outstands an affordable, reliable and low cost AGRS design. The main outcome of the study shows this method increases the quality of curvature information of AGRS data while cost of the algorithm is reduced in each iteration so the proposed ANN-BFGS is a trustworthy appropriate model for Gamma-ray data reconstruction and analysis based on advanced novel artificial intelligence systems.

The Study on the Whaling Reality to the Large Baleen Whales and their Seasonal Occurrence in the Yellow Sea during Japanese Colonial Period (일제강점기 황해에서의 대형 수염고래류 포경실태 및 출현 계절에 대한 고찰)

  • CHOI, JOONG KI;SEO, JI-HO;YOON, WONDUK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.3
    • /
    • pp.475-482
    • /
    • 2019
  • Over 3,200 large baleen whales including 3,173 fin whales, 7 blue whales and 28 humpback whales were hunted by Japanese whaling companies in the Yellow Sea during Japanese colonial period (1916~1944). As a result, these large baleen whales are under the endangered state in the Yellow Sea. The Yellow Sea had good living conditions for large baleen whales in the water temperature ($4{\sim}26^{\circ}C$) and food supply. The whaling on the large baleen whales was carried out mainly from early winter to late spring. The possibility of large scale whaling was caused by the migration of these baleen whales from other areas for the feeding on abundances of Euphausia pacifica in the surface layer during these seasons. During summer and autumn season, the baleen whales moved to other areas (good feeding ground as Woolsan offshore waters), because Euphausia pacifica stayed below the strong themocline which was formed from June to October in the Yellow Sea.

Development Plan of Compact Satellite for Water Resources and Water-related Disaster Management (수자원·수재해 중형위성 개발 방안)

  • HWANG, Eui-Ho;CHAE, Hyo-Sok;YU, Wan-Sik
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.218-237
    • /
    • 2018
  • The purpose of this study is to propose a mid - range low - orbit water disaster monitoring satellite development plan to revolutionize water disaster management infrastructure through securing an independent and leading observation infrastructure and to secure safety against disaster prepared for climate change. Water and water disaster satellites should be able to detect changes in the surface of the ground and observe hydrological factors during daytime, nighttime, and bad weather. In addition, independent technology development should be possible. To do this, we selected C-band image radar payload considering domestic technology and water resources management, and suggested detailed development plan. In this way, it is reflected in the national next-generation mid-satellite 2-phase project plan to secure the basis for building a disaster monitoring system related to wide-area water.

Parallel Computing on Intensity Offset Tracking Using Synthetic Aperture Radar for Retrieval of Glacier Velocity

  • Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.29-37
    • /
    • 2019
  • Synthetic Aperture Radar (SAR) observations are powerful tools to monitor surface's displacement very accurately, induced by earthquake, volcano, ground subsidence, glacier movement, etc. Especially, radar interferometry (InSAR) which utilizes phase information related to distance from sensor to target, can generate displacement map in line-of-sight direction with accuracy of a few cm or mm. Due to decorrelation effect, however, degradation of coherence in the InSAR application often prohibit from construction of differential interferogram. Offset tracking method is an alternative approach to make a two-dimensional displacement map using intensity information instead of the phase. However, there is limitation in that the offset tracking requires very intensive computation power and time. In this paper, efficiency of parallel computing has been investigated using high performance computer for estimation of glacier velocity. Two TanDEM-X SAR observations which were acquired on September 15, 2013 and September 26, 2013 over the Narsap Sermia in Southwestern Greenland were collected. Atotal of 56 of 2.4 GHz Intel Xeon processors(28 physical processors with hyperthreading) by operating with linux environment were utilized. The Gamma software was used for application of offset tracking by adjustment of the number of processors for the OpenMP parallel computing. The processing times of the offset tracking at the 256 by 256 pixels of window patch size at single and 56 cores are; 26,344 sec and 2,055 sec, respectively. It is impressive that the processing time could be reduced significantly about thirteen times (12.81) at the 56 cores usage. However, the parallel computing using all the processors prevent other background operations or functions. Except the offset tracking processing, optimum number of processors need to be evaluated for computing efficiency.

A Comparative Study on the Behavior of High-rise Buildings by 2D and 3D Dynamic Analysis with Considering the Ground (초고층 건물의 지반을 고려한 2D 및 3D 동적해석에 의한 거동 비교 연구)

  • You, Kwangho;Baek, Yong;Kim, Seungjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.10
    • /
    • pp.5-14
    • /
    • 2019
  • Recently, earthquakes have occurred in our country and seismic stability of high-rise buildings in large cities is being a growing interest and thus the related studies have been increased. Also the grounds are considered indirectly in most of seismic designs and analyses and seismic researches based on 3D dynamic analysis are insufficient. In this study, therefore, 2D and 3D dynamic analyses were performed based on the SSI complete model including grounds and the behavior was compared and analyzed. For dynamic modeling, linear time history analyses were performed by using MIDAS GTS NX. For this purpose, a high-rise building was assumed to be constructed on top of the bedrock and surrounded by a surface layer. A sensitivity analysis was performed with the selected parameters. The dynamic behavior was compared and analyzed in terms of horizontal displacements, drift ratios, bending stresses, and weak parts. In most cases, 2D dynamic behavior was calculated to be larger than 3D's and thus it shows more conservative results with increasing number and size of weak parts.