DOI QR코드

DOI QR Code

Source Mechanism Analysis and Simplified Modeling for Rockburst

록버스트 발생기구 분석과 단순화 모델링

  • Received : 2021.09.07
  • Accepted : 2021.09.27
  • Published : 2021.09.30

Abstract

Rockburst is a sudden and violent failure of rock. During the failure process, excess energy is liberated as seismic energy, which in turn causes the surrounding rock mass to vibrate. The level of the ground vibration can reach a magnitude of over 4.5 in the Richter local scale. Thus, a rockburst can cause not only injury to persons, but also damage to both underground workings and surface structures. In this paper the source mechanism of rockburst is analyzed based mainly on the two reports of the Canadian Rockburst Research Program (CRRP). A simplified LS-DYNA modeling is also performed to identify the tensile failure patterns occurring in the remaining rock mass right after blasting in mine stope. The configuration of the simplified model will probably be useful in small-scale laboratory tests for investigating the source mechanism of rockburst.

록버스트는 암석의 돌연하고도 격렬한 파괴를 일컫는 말이다. 이 파괴과정에서 초과에너지가 지진에너지로 방출되면, 주변의 암반 중에는 지반진동이 발생한다. 이렇게 생성된 지반진동의 수준은 리히터 로컬 척도로 규모 4.5 이상에 이를 수 있다. 이와 같은 록버스트는 인명에 위해를 가할 뿐 아니라 지하작업장과 지상구조물에까지 손상을 일으킬 수 있다. 본 논문에서는 캐나다 록버스트 종합연구 1단계 및 2단계 보고서를 토대로 록버스트의 발생기구를 분석하였다. 아울러 단순화된 LS-DYNA 모델을 작성하여 채광막장 암반에서 발파 직후 발생되는 인장균열의 발생양상을 분석하여 보았다. 이 단순화 모델의 개념은 록버스트의 발생기구를 파악하기 위해 실험실에서 수행되는 소규모 시험에 적용한다면 매우 유용할 것이다.

Keywords

Acknowledgement

본 연구는 한국지질자원연구원의 주요사업(과제코드 GP2020-010)의 지원을 받아 수행되었습니다.

References

  1. 이정인, 1977, 강성하중봉을 이용한 협탄층암석의 압축강도 이후의 변경거동에 관한 연구, 대한광산학회지, Vol. 14, pp. 325-334.
  2. 송재준, 이정인, 1996, 터널굴착에서 불연속면에 의한 공동주변 암반블록의 안정성 해석, 한국자원공학회지, Vol. 33, pp. 186-193.
  3. 정치광, 정명근, 김영근, 심재범, 2009, 대심도 암반특성을 고려한 터널 위험도 분석 및 설계사례, Proc. of Int. Symp. on Urban Geotechnics, Sep. 25-26, 2009, Incheon, Korea, pp. 605-321.
  4. 조동성, 지정만, 김두영, 1978, 석탄의 심부개발에서 발생되는 문제점에 대한 연구, 대한광산학회지, Vol. 15, pp. 302-309.
  5. 천대성, 류창하, 이항복, 최병희, 2019, 지하광산 갱내통신 기반 실시간 미소진동 모니터링 체계 개발, 한국지질자원연구원 연구보고서(GP2018-001-2019), 과학기술정보 통신부.
  6. 최병희, 선우춘, 정용복, 2020, LS-DYNA 발파 모델링에서 현장암반의 특성을 반영하기 위한 Hoek-Brown 파괴기준과 Holmquist-Johnson-Cook 콘크리트 재료모델의 접목, 화약발파, 대한화약발공학회지, Vol. 38, No. 3, pp. 15-29.
  7. CAMIRO, 1995, Canadian Rockburst Research Program 1990-1995 - Rockburst research handbook, Report of Canadian Mining Industry Research Organization (CAMIRO) Mining Division.
  8. Hedley, D. G. F., 1992, Rockburst handbook for ontario hardrock mines, CANMET Special Report SP92-1E, Mining Research Laboratories, CANMET.
  9. Holmquist, T. J., G. R. Johnson and W. H. Cook, 1993, A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures, Proc. 14th Int. Symp. on Ballistics, Quebec, Canada, pp. 591-600.
  10. Joughin, N. C. and A. J. Jager, 1983, Fracture of rock at stope faces in South African gold mines, Proc. of Institution of Mining and Metallergy Symposium: Rockbursts: prediction and control, London, pp. 53-66.
  11. LSTC, 2018, LS-DYNA KEYWORD USER'S MANUAL, VOL. II, Material Models, LS-DYNA R11, Livermore Software Technology Corporation (LSTC).
  12. Murthy, R. K. and P. D. Gupta, 1983, Rock mechanics studies on the problem of ground control and rockbursts in the Kolar Gold Fields, Proc. Rockbursts: prediction and control, Inst. of Mining and Metallurgy (IMM), London, England, pp. 67-80.
  13. Napier, J. A. L. and M. W. Hildyard, 1992, Simulation of fracture growth around openings in highly stressed brittle rock, Journal of South African Institue of Mining and Metallurgy, Vol. 92, No. 6, Jun. 1992, pp. 159-168.
  14. Riedel, W., K. Thoma and S. Hiermaier, 1999, Penetration of Reinforced Concrete by BETA-B-500 - Numerical Analysis Using a New Macroscopic Concrete Model for Hydrocodes, Proc. 9th Int. Symp. on Interaction of the Effects of Munitions with Structures (ISIEMS), Berlin, Germany, pp. 315-322.