• Title/Summary/Keyword: Ground Data Maintenance System

Search Result 62, Processing Time 0.028 seconds

A study on performance-based evaluation system for NATM tunnels in use: development of evaluation model and validation (공용중인 NATM 터널의 성능중심 평가체계 연구: 평가모형 개발 및 검증)

  • Moon, Joon-Shik;Kim, Hong-Kyoon;An, Jai-Wook;Lee, Jong-Gun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.107-120
    • /
    • 2020
  • In a performance-based evaluation of structures in use, the current performance is assessed by summing up the weighting of the evaluation indices for each performance. In this study, to suggest a performance-based evaluation technique for NATM tunnels in use, the performance evaluation indices were derived by examining the characteristics and similarities of each index developed from previous study. The weighting of the evaluation indices was derived by calculating the relative importance of each evaluation indices from the AHP analysis. In order to develop a quantitative evaluation model, grading criteria for each performance index was derived through literature review, and performance evaluation tables for road and railway tunnels were presented. In order to verify the significance of the proposed performance evaluation model, the correlation analysis was performed between each evaluation index and the final evaluation result. In the correlation analysis, the survey data measured through precision safety diagnosis in the tunnel in use was applied. It may be said that the proposed evaluation indices, weighting, criteria and evaluation models for tunnels in use can be applied to the performance-based maintenance system of tunnels.

Development of a Slope Condition Analysis System using IoT Sensors and AI Camera (IoT 센서와 AI 카메라를 융합한 급경사지 상태 분석 시스템 개발)

  • Seungjoo Lee;Kiyen Jeong;Taehoon Lee;YoungSeok Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Recent abnormal climate conditions have increased the risk of slope collapses, which frequently result in significant loss of life and property due to the absence of early prediction and warning dissemination. In this paper, we develop a slope condition analysis system using IoT sensors and AI-based camera to assess the condition of slopes. To develop the system, we conducted hardware and firmware design for measurement sensors considering the ground conditions of slopes, designed AI-based image analysis algorithms, and developed prediction and warning solutions and systems. We aimed to minimize errors in sensor data through the integration of IoT sensor data and AI camera image analysis, ultimately enhancing the reliability of the data. Additionally, we evaluated the accuracy (reliability) by applying it to actual slopes. As a result, sensor measurement errors were maintained within 0.1°, and the data transmission rate exceeded 95%. Moreover, the AI-based image analysis system demonstrated nighttime partial recognition rates of over 99%, indicating excellent performance even in low-light conditions. Through this research, it is anticipated that the analysis of slope conditions and smart maintenance management in various fields of Social Overhead Capital (SOC) facilities can be applied.

Method of Earthquake Acceleration Estimation for Predicting Damage to Arbitrary Location Structures based on Artificial Intelligence (임의 위치 구조물의 손상예측을 위한 인공지능 기반 지진가속도 추정방법 )

  • Kyeong-Seok Lee;Young-Deuk Seo;Eun-Rim Baek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.71-79
    • /
    • 2023
  • It is not efficient to install a maintenance system that measures seismic acceleration and displacement on all bridges and buildings to evaluate the safety of structures after an earthquake occurs. In order to maintain this, an on-site investigation is conducted. Therefore, it takes a lot of time when the scope of the investigation is wide. As a result, secondary damage may occur, so it is necessary to predict the safety of individual structures quickly. The method of estimating earthquake damage of a structure includes a finite element analysis method using approved seismic information and a structural analysis model. Therefore, it is necessary to predict the seismic information generated at arbitrary location in order to quickly determine structure damage. In this study, methods to predict the ground response spectrum and acceleration time history at arbitrary location using linear estimation methods, and artificial neural network learning methods based on seismic observation data were proposed and their applicability was evaluated. In the case of the linear estimation method, the error was small when the locations of nearby observatories were gathered, but the error increased significantly when it was spread. In the case of the artificial neural network learning method, it could be estimated with a lower level of error under the same conditions.

A Study on Improvement about abnormal display of Multi Function Display for KUH (한국형 기동헬기 다기능시현기의 이상시현 개선에 관한 연구)

  • Kim, Young Mok;Chang, Joong Jin;Jun, Byung Kyu;Kim, Chang Young;Kim, Tae Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.344-350
    • /
    • 2014
  • Multi Function Display(MFD) of Korean Utility Helicopter(KUH) is the component of mission management/display control system and displays image information(navigation, flight, survivability, digital map, maintenance) acquired from Mission Computer(MC) while the aircraft is operated. It is an essential equipment for pilots to perform flight mission and it has functions of display scene control, data display, built in test(BIT) and brightness control. In this paper, it is analyzed the cause of abnormal display(flickering) on MFD and summarized the design changes to solve the defect. It is also described system safety analysis and suggested verification results of flight/ground test.

RFID Applicability Study to Prevent the Third Party Accident of LNG Pipe Line (가스관 굴착사고 예방을 위한 RFID 인식기술의 적용성 연구)

  • Han, Sang-Wook;Park, Su-Ri;Kim, Byung-Jick
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2012
  • According to the last 5 year statistics of KGS, there occurred 22 under ground gas pipe accidents per year in Korea. And about 5 accidents per year were caused from the third party digging. IT recognition technique could reduce such underground gas accidents. Among IT recognition technique, RFID is most poplar. In the air, RFID were applied to various fields including the distribution industry, but underground condition, the research and application cases of RFID were little This research was undertaken to see the applicability of RFID to underground gas pipe safety. By use of 900 MHz RFID reader and commercial metal tag, the stable recognition distance was measured in the similar underground condition of LNG pipe. Stable recognition depth of RFID tag were measured to be 50, 45, 25 cm in the medium of soil, 5 cm-thick-concrete+soil, and water respectively. The measured distances were considered to be the meaningful distance to prevent the gas pipe accidents Also the efficient ways to input the required gas pipe data to the 24 byte metal tag were proposed. Application of RFID to underground LNG supply system will not only reduce the gas accidents due to third party digging but also improve the gas line maintenance efficiency.

Forest Fire Monitoring System Using Satellite (위성활용 산불감시 시스템 구축)

  • Park, Beom-Sun;Cho, In-Je;Lim, Jae-Hwan;Kim, In-Bae
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.143-150
    • /
    • 2021
  • It introduces the contents of establishing a geostationary satellite-based forest fire monitoring system that can monitor areas of the Korean Peninsula 24 hours a day for forest fire monitoring, and describes how to establish a forest fire monitoring system and use it in various ways. In order to establish a satellite-utilized forest fire monitoring system, we will describe and draw conclusions on literature research, technical principles, forest fire monitoring means, and satellite forest fire monitoring system. The satellite-utilized forest fire monitoring system can consist of one geostationary satellite equipped with infrared detection optical sensors and a ground processing station that processes data received from satellites to spread surveillance information. Forest fire monitoring satellites are located in the country's geostationary orbit and should be operated 24 hours a day, 365 days a day. Forest fire monitoring technology is an infrared detection technology that can be used in national public interests such as forest fire monitoring and national security. It should be operated 24 hours a day, and to satisfy this, it is efficient to establish a geostationary satellite-based forest fire monitoring satellite system.

The Study on Constructing Underground Wall to Prevent Seawater Intrusion on Coastal Areas (지하수댐 물막이벽 시공법과 해안지역 염수침입 방지기술 개선 방안)

  • 부성안;이기철;김진성;정교철;고양수
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.215-234
    • /
    • 2002
  • Groundwater Dam is one of the reliable techniques to get huge amount of groundwater abstraction for municipal, agricultural, drinking, industrial water supply system. It can be a major technique to solve water shortage problems when it based on the sufficient watershed, proper topology, and adequate aquifer distribution and pollution control, Groundwater Dam had initiated its construction by RDC(former KARICO) in early eighties in Korea and 4 of it in total were added more until late eighty. However, this technique has shrunken its application due to gradually decreased yield rate after sever years of construction. After we studied several existing sites precisely, we concluded that the main reason of decreasing yield rate was come form engineering roughness on construction in early nineties. Theoretically, the technique itself seemed to be little detectives however, there were a little application in the fields in Korea. With the recent advance in engineering fields, those defects in construction would be no longer obstacle to construct underground wall and the technique could be a one of major ground water production technique in the future. It is essential to study following items thoroughly before select the appropriate site. The topography and the site of the underground wall, aquifer distribution, the specific technique for wall construction to block groundwater flow effectively and strict quality control during construction are critical. The surface and ground water monitoring data should be collected. Sustainability of the Groundwater Dam with huge groundwater abstraction in long term should be based on the long-term water balance analysis for each site. The water quality, environmental effect analysis and maintenance achedule should be also analyzed and planned in prior. It is suggested that the two consecutive underground wall in the coastal area to prevent seawater intrusion beneath a single wall.

Study on the Damage Pattern Analysis of a 3 Phase 22.9/3.3kV Oil Immersed Transformer and Judgment of the Cause of Its Ignition (3상 22.9/3.3kV 유입변압기의 소손패턴 해석 및 발화원인 판정에 관한 연구)

  • Choi, Chung-Seog
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1274-1279
    • /
    • 2011
  • The purpose of this paper is to present the manufacturing defect and damage pattern of a 3 phase 22.9/3.3kV oil immersed transformer, as well as to present an objective basis for the prevention of a similar accident and to secure data for the settlement of PL related disputes. It was found that in order to prevent the occurrence of accidents to transformers, insulating oil analysis, thermal image measurement, and corona discharge diagnosis, etc., were performed by establishing relevant regulation. The result of analysis performed on the external appearance of a transformer to which an accident occurred, the internal insulation resistance and protection system, etc., showed that most of the analysis items were judged to be acceptable. However, it was found that the insulation characteristics between the primary winding and the enclosure, those between the ground and the secondary winding, and those between the primary and secondary windings were inappropriate due to an insulating oil leak caused by damage to the pressure relief valve. From the analysis of the acidity values measured over the past 5 years, it is thought that an increase in carbon dioxide (CO2) caused an increase in the temperature inside the transformer and the increase in the ethylene gas increased the possibility of ignition. Even though 17 years have passed since the transformer was installed, it was found that the system's design, manufacture, maintenance and management have been performed well and the insulating paper was in good condition, and that there was no trace of public access or vandalism. However, in the case of transformers to which accidents have occurred, a melted area between the upper and the intermediate bobbins of the W-phase secondary winding as well as between its intermediate and lower bobbins. It can be seen that a V-pattern was formed at the carbonized area of the transformer and that the depth of the carbonization is deeper at the upper side than the lower side. In addition, it was found that physical bending and deformation occurred inside the secondary winding due to non-uniform pressure while performing transformer winding work. Therefore, since it is obvious that the accident occurred due to a manufacturing defect (winding work defect), it is thought that the manufacturer of the transformer is responsible for the accident and that it is lawful for the manufacture to investigate and prove the concrete cause of the accident according to the Product Liability Law (PLL).

3D Shape Embodiment of Dam using the 3D Laser Scanning System (3차원 레이저 스케닝 시스템을 이용한 댐체의 3차원 형상구현)

  • Shon, Ho-Woong;Yun, Bu-yeol;Park, Dong-il;Pyo, Ki-Won
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.377-386
    • /
    • 2006
  • There is an inseparable relation between human race and engineering work. As world developed into highly industrialized society, a diversity of large structures is being built up correspondently to limited topographical circumstance. Though large structures are national establishments which provide us with convenience of life, there are some disastrous possibilities which were never predicted such as ground subsidence and degradation. It is very difficult to analyze the volume of total metamorphosis with the relative displacement measurement system which is now used and it is impossible to know whether there is structural metamorphosis within a permissible range of design or not. In this research with an object of 13-year-old earthen dam, through generating point-cloud which has 3D spatial coordinates(x, y, z) of this dam by means of 3D Laser Scanning, we can get real configuration data of slanting surface of this dam with this method of getting a number of 3D spatial coordinates(x, y, z). It gives 3D spatial model to us and we can get various information of this dam such as the distance of slanting surface of dam, dimensions and cubic volume. It can be made full use of as important source material of reinforcement and maintenance works to detect previously the bulging of the dam through this research.

  • PDF

Landscape Object Classification and Attribute Information System for Standardizing Landscape BIM Library (조경 BIM 라이브러리 표준화를 위한 조경객체 및 속성정보 분류체계)

  • Kim, Bok-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.103-119
    • /
    • 2023
  • Since the Korean government has decided to apply the policy of BIM (Building Information Modeling) to the entire construction industry, it has experienced a positive trend in adoption and utilization. BIM can reduce workloads by building model objects into libraries that conform to standards and enable consistent quality, data integrity, and compatibility. In the domestic architecture, civil engineering, and the overseas landscape architecture sectors, many BIM library standardization studies have been conducted, and guidelines have been established based on them. Currently, basic research and attempts to introduce BIM are being made in Korean landscape architecture field, but the diffusion has been delayed due to difficulties in application. This can be addressed by enhancing the efficiency of BIM work using standardized libraries. Therefore, this study aims to provide a starting point for discussions and present a classification system for objects and attribute information that can be referred to when creating landscape libraries in practice. The standardization of landscape BIM library was explored from two directions: object classification and attribute information items. First, the Korean construction information classification system, product inventory classification system, landscape design and construction standards, and BIM object classification of the NLA (Norwegian Association of Landscape Architects) were referred to classify landscape objects. As a result, the objects were divided into 12 subcategories, including 'trees', 'shrubs', 'ground cover and others', 'outdoor installation', 'outdoor lighting facility', 'stairs and ramp', 'outdoor wall', 'outdoor structure', 'pavement', 'curb', 'irrigation', and 'drainage' under five major categories: 'landscape plant', 'landscape facility', 'landscape structure', 'landscape pavement', and 'irrigation and drainage'. Next, the attribute information for the objects was extracted and structured. To do this, the common attribute information items of the KBIMS (Korean BIM Standard) were included, and the object attribute information items that vary according to the type of objects were included by referring to the PDT (Product Data Template) of the LI (UK Landscape Institute). As a result, the common attributes included information on 'identification', 'distribution', 'classification', and 'manufacture and supply' information, while the object attributes included information on 'naming', 'specifications', 'installation or construction', 'performance', 'sustainability', and 'operations and maintenance'. The significance of this study lies in establishing the foundation for the introduction of landscape BIM through the standardization of library objects, which will enhance the efficiency of modeling tasks and improve the data consistency of BIM models across various disciplines in the construction industry.