• Title/Summary/Keyword: Ground Altitude

Search Result 343, Processing Time 0.042 seconds

Robust Airspeed Estimation of an Unpowered Gliding Vehicle by Using Multiple Model Kalman Filters (다중모델 칼만 필터를 이용한 무추력 비행체의 대기속도 추정)

  • Jin, Jae-Hyun;Park, Jung-Woo;Kim, Bu-Min;Kim, Byoung-Soo;Lee, Eun-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.859-866
    • /
    • 2009
  • The article discusses an issue of estimating the airspeed of an autonomous flying vehicle. Airspeed is the difference between ground speed and wind speed. It is desirable to know any two among the three speeds for navigation, guidance and control of an autonomous vehicle. For example, ground speed and position are used to guide a vehicle to a target point and wind speed and airspeed are used to maximize flight performance such as a gliding range. However, the target vehicle has not an airspeed sensor but a ground speed sensor (GPS/INS). So airspeed or wind speed has to be estimated. Here, airspeed is to be estimated. A vehicle's dynamics and its dynamic parameters are used to estimate airspeed with attitude and angular speed measurements. Kalman filter is used for the estimation. There are also two major sources arousing a robust estimation problem; wind speed and altitude. Wind speed and direction depend on weather conditions. Altitude changes as a vehicle glides down to the ground. For one reference altitude, multiple model Kalman filters are pre-designed based on several reference airspeeds. We call this group of filters as a cluster. Filters of a cluster are activated simultaneously and probabilities are calculated for each filter. The probability indicates how much a filter matches with measurements. The final airspeed estimate is calculated by summing all estimates multiplied by probabilities. As a vehicle glides down to the ground, other clusters that have been designed based on other reference altitudes are activated. Some numerical simulations verify that the proposed method is effective to estimate airspeed.

Ground Effect Analysis of Tilt-Rotor Aircraft (틸트 로터 항공기의 지면 효과 분석)

  • Kim, Cheol-Wan;Chang, Byung-Hee;Lee, Jang-Yeon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.427-430
    • /
    • 2006
  • The ground effect on tilt-rotor UAV is analyzed by simulating the hovering UAV for various altitudes. Ground effect increases pressure beneath the UAV body and generates additional lifting force. The ground effect diminishes at altitude 3m and hovering UAV generates constant lifting force above 3m.

  • PDF

Procedure of Barometer Setting in Flight with On-board Navigation Data alone (자체 항법 정보만을 이용한 비행 중 기압 고도계 설정 방법)

  • Jung, Suk-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.300-308
    • /
    • 2012
  • In GPS/INS/barometer navigation system for UAV, two procedures were proposed in order to set three reference parameters for the pressure altitude of QNH or QFE settings, using the navigation data from on-board system alone. These procedures yield required the reference parameters through mathematical process with the altitude and the atmosphere properties measured for a short duration of flight, of which a special pattern is requested according to the selected procedure. Dependency only upon the on-board navigation data can eliminate a requirement for the atmospheric measurement system in the ground support system and can expand a flight boundary to a remote area where the ground support is not available. Especially the procedure with the regression method uses altitude and pressure but temperature to produce the three reference parameters. No need of temperature measurement for the pressure altitude system can simplify the on-board air data system.

Performance of UAV(Unmanned Aerial Vehicle) Communication System Using Civil Wireless Mobile Networks

  • Lee, Byung-Seub
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • Recently, demands on civilian UAV (Unmanned Aerial Vehicle) has been increasing and appropriate communication system is required for the UAV. In this paper, the performance of the UAV communication system using commercial wireless mobile network is discussed. The main service area of the wireless mobile network is ground level however the flying range of the UAV is normally in high altitude. Because of this mismatch of service area the performance of the UAV communication system is degraded in high altitude. To compensate performance degradation of the UAV communications system in high altitude, adaptive array antenna is introduced which is able to overcome altitude limitation of the UAV communication system.

UAV Altitude and Attitude Estimation Method Using Stereo Vision (스테레오 비전를 이용한 무인기 고도 및 자세 추정기법)

  • Jung, Ha-Hyoung;Lee, Jun-Min;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.17-23
    • /
    • 2016
  • This paper presents the implementation of altitude and attitude measurement algorithm using stereo camera for an unmanned aerial vehicle (UAV). Depth images are generated by calibrating the stereo cameras, and converted into 3D point cloud data. By applying a plane fitting algorithm to the resultant point cloud, altitude from ground level, and roll and pitch angles are extracted. To verify the performance, experimental results are provided by comparing with those of the motion caption system.

Study on Liquid Rocket Engine High Altitude Simulation Test (액체로켓엔진 고공환경 모사시험 연구)

  • Kim, Seung-Han;Moon, Yoon-Wan;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.733-736
    • /
    • 2010
  • Korea Aerospace Research Institute (KARI) performed the preliminary design of liquid rocket engine high-altitude simulation firing test facility for the development and qualification of LRE for the 2nd stage of KSLV-II. The engine high-altitude simulation firing test facility, which are to be constructed at Goheung Space Center, will provide liquid oxygen and kerosene to enable the high-altitude simulation firing test of 2nd stage engine at ground test facility. The high-altitude environment is obtained using a supersonic diffuser operated by the self-ejecting jet from the liquid rocket engine.

  • PDF

Design and Development of High Altitude Test Facility for Kick Motor (고공환경모사 시험설비 설계/개발)

  • Ryu, Jung-Hun;Lee, Jun-Ho;Suh, Hyuk;Jang, Ki-Won;Kim, Yong-Wook;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.403-404
    • /
    • 2008
  • The 2nd stage Kick Motor under the national aerospace middle and long term plan operates over the height of 300Km. Rocket Motors, designed for operation in high altitude, need nozzles with large expansion ratio to improve thrust efficiency. Hence, to evaluate the performance of such rocket motors on the ground, similar low pressure with the operating condition has to be made for the ground test to prevent flow separation in the nozzle. This study is for the installation of the high altitude test facility and test result for Kick Motor.

  • PDF

The Vibration Velocity and Vibration Level of Near-field Blasting Vibration in an Urban Blasting Site (근접장 발파진동에서 진동속도와 진동레벨의 비교)

  • Lee, Yeon-Soo;Chang, Seo-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.918-923
    • /
    • 2005
  • The vibration level (dB(V)) and vibration velocity (cm/sec) on the ground and buildings due to the differences of the measuring sites from the blasting source was investigated. To compare with vibration level and vibration velocity theirs magnitude was not surely directly proportional and vibration velocity 0.1 cm/sec was $45\~50$ dB(V). The difference between the measured vibration level and the calculated vibration level by Ejima's equation using vibration velocity PVS(peak vector sum) showed $21.0\~30.9$ dB(V) on the ground, $15.3\~23.6$ dB(V) on the apartment, respectively. And the correlation of vibration velocity and nitration level at the measuring sites of lower altitude showed higher than that of higher altitude.

Altitude Error Analysis of Helicopter-Borne FMCW Radar Altimeter (헬기 탑재 레이다 고도계 신호 수집 및 오차 분석)

  • Jung, Jung-Soo;Lee, Ho-Jun;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.258-261
    • /
    • 2012
  • Helicopter-borne FMCW radar altimeter obtains the altitude information using the beat frequency between the transmitted and reflected signal from the nadir direction. However, the altitude error may exist when the strong echoes are received from the large RCS at the off-nadir direction because of the wide beamwidth of the altimeter antenna. In this paper, in order to investigate the effect of the altitude error due to the large RCS around the off-nadir direction, the reflected signals were measured by using the corner reflectors displaced on the several reference ground positions, and the acquired signals were analyzed and compared in the spectral domain. The analysis results can be used for the improvement of the altitude accuracy in the radar altimeter.

Performance Characteristics for the Variation of Altitude and Tilt Angle in the Satellite Imager Using Time Delay and Integration(TDI) (Time Delay and Integration(TDI)을 사용하는 위성 영상 기기의 고도 및 촬영각 변화에 대한 성능 특성)

  • 조영민
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.2
    • /
    • pp.91-96
    • /
    • 2002
  • The performance characteristics of a satellite imager using a Time Delay and Integration(TDI) Charge Coupled Device (CCD) with fixed integration time is investigated for the variation of satellite altitude and tilt angle. In consequence of the investigation TDI synchronization using tilt imaging is proposed as a solution to compensate geometric performance degradation due to altitude decrease. The tilt angle optimized for the TDI synchronization at decreased altitude is presented. This result can be used for a TDI CCD imager with variable integration time in a certain range as well.