• Title/Summary/Keyword: Ground Altitude

Search Result 346, Processing Time 0.023 seconds

The Ground Test and Evaluation to Verify Engine Performance of Sea-Star I (해성I의 공기흡입식 엔진 성능 검증을 위한 지상시험평가)

  • Jung, Jae-Won;Kim, Jong-Jin;Park, Sang-Woo;Kim, Sang-Yong;Kim, Moo-Gon;Kim, Tae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.381-384
    • /
    • 2009
  • The Air-breathing engine like Sea-Star I is a second propulsive force generator to fly to the target after the booster generating initial propulsive force is separated. The performance of Sea-Star I engine should be verified because the cruise missile controls direction and altitude during flight, so ground engine test is executed before flight test. This these presents evaluation method of ground engine test to verify performance of Sea-Star I's engine.

  • PDF

Measurement of Radiative Heat Flux of Kick Motor at Ground Test (킥 모터 지상 시험의 플룸 복사 열유속 측정)

  • Kim, Seong-Lyong;Choi, Sang-Ho;Ko, Ju-Yong;Kim, In-Sun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.440-443
    • /
    • 2008
  • Plume radiation has been measured during ground tests of KSLV-I kick motor in order to predict the thermal load on the equipment around the kick motor at flight. The measuring positions are the kick motor base, and the measured heats were about 2${\sim}$5 w/cm$^2$. The measured heat showed a lot of shot fluctuation in their values, and the radiative heats at the latter half of time are higher than those of the first half. A plausible explanation for these phenomena was given as the variation of alumina particles with time. The radiative heats along the plume axis were also measured recently at 8 positions with 1.5m radius from plume axis, but only the initial parts of the results could be acceptable because the sensor were damaged by the accumulated heat. The strongest heat occurred at the middle of the plume, which can be explained with different view factors. Despite of the plausible explanation, it seems to need more analysis because the plume structure such as temperature, alumina particle, after burning has not been revealed until yet. The measure heat flux has been reflected in the prediction of the plume radiation at high altitude where the kick motor operates.

  • PDF

Classifying Forest Species Using Hyperspectral Data in Balah Forest Reserve, Kelantan, Peninsular Malaysia

  • Zain, Ruhasmizan Mat;Ismail, Mohd Hasmadi;Zaki, Pakhriazad Hassan
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.2
    • /
    • pp.131-137
    • /
    • 2013
  • This study attempts to classify forest species using hyperspectral data for supporting resources management. The primary dataset used was AISA sensor. The sensor was mounted onboard the NOMAD GAF-27 aircraft at 2,000 m altitude creating a 2 m spatial resolution on the ground. Pre-processing was carried out with CALIGEO software, which automatically corrects for both geometric and radiometric distortions of the raw image data. The radiance data set was then converted to at-sensor reflectance derived from the FODIS sensor. Spectral Angle Mapper (SAM) technique was used for image classification. The spectra libraries for tree species were established after confirming the appropriate match between field spectra and pixel spectra. Results showed that the highest spectral signature in NIR range were Kembang Semangkok (Scaphium macropodum), followed by Meranti Sarang Punai (Shorea parvifolia) and Chengal (Neobalanocarpus hemii). Meanwhile, the lowest spectral response were Kasai (Pometia pinnata), Kelat (Eugenia spp.) and Merawan (Hopea beccariana), respectively. The overall accuracy obtained was 79%. Although the accuracy of SAM techniques is below the expectation level, SAM classifier was able to classify tropical tree species. In future it is believe that the most effective way of ground data collection is to use the ground object that has the strongest response to sensor for more significant tree signatures.

Measurement and Analysis of the Atmospheric Electric Field using Balloon-Carried E-Field Sensor (비양기구로 운반되는 전계센서를 이용한 대기전계의 측정과 분석)

  • Kim, Seung-Min;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.78-84
    • /
    • 2016
  • This paper is focused on the measurement and analysis of an atmospheric electric field which is caused by thunderclouds. The electric field due to thunderclouds changes very slowly. For this reason, the extremely low frequency E-field sensor needs to be used for measuring the atmospheric electric field strength. The balloon-carried E-field sensor system with the time constant of 1sec was designed and fabricated. The electric field sensor consists of $100mm{\times}100mm$ copper plate, active integrator, high pass and low pass filters and batteries. The measurements of atmospheric electric fields were made by the balloon-carried E-field sensor and radiosonde, which sends the data back to ground in real time. From the calibration experiments, the response sensitivity of the E-field sensor was 0.154mV/kV/m in the frequency range of less than 1kHz. As a result from the actual experiment of the atmospheric electric field, the electric field signals were observed from the altitude of about 2.5km. Also, as the altitude was increased, the detected electric field wave oscillated with the fluctuation of sensing plate. The proposed method seems suitable for measurements of atmospheric electric fields, because it is inexpensive, simple to use and launch.

THE SELECTION OF ALTITUDE AND INCLINATION FOR REMOTE SENSING SATELLITES (원격탐사 위성의 고도와 궤도기울기 결정)

  • 이정숙;이병선
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.244-255
    • /
    • 1995
  • The success of a satellites mission is largely depended upon the choice of an appropriate orbit. In the case of a remote sensing satellite which observes the Earth, there exits an optimum solar elevation angle depending on the mission. Therefore a sun-synchronous orbit is suitable for a remote sensing mission. The second-order theory for secular perturbation due to non-symmetric geopotential was described. To design a sun-synchronous orbit, a constraint condition on regression of node was derived. A algorithm to determine the altitude and the inclination was introduced using this constraint condition. As practical examples, the altitudes and the inclinations of four remote sensing satellites were calculated. The ground tracks obtained by the orbit propagator were used to verify the resulting sun-synchronous orbital elements.

  • PDF

Orbit Determination and Maneuver Planning for the KOMPSAT Spacecraft in Launch and Early Orbit Phase Operation

  • Lee, Byung-sun;Lee, Jeong-Sook;Won, Chang-Hee;Eun, Jong-Won;Lee, Ho-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.29-32
    • /
    • 1999
  • Korea Multi-Purpose SATellite(KOMPSAT) is scheduled to be launched by TAURUS launch vehicle in November, 1999. Tracking, Telemetry and Command(TT&C) operation and the flight dynamics support should be performed for the successful Launch and Early Orbit Phase(LEOP) operation. After the first contact of the KOMPSAT spacecraft, initial orbit determination using ground based tracking data should be performed for the acquisition of the orbit. Although the KOMPSAT is planned to be directly inserted into the Sun- synchronous orbit of 685 km altitude, the orbit maneuvers are required fur the correction of the launch vehicle dispersion. Flight dynamics support such as orbit determination and maneuver planning will be performed by using KOMPSAT Mission Analysis and Planning Subsystem(MAPS) in KOMPSAT Mission Control Element(MCE). The KOMPSAT MAPS have been jointly developed by Electronics and Telecommunications Research Institute(ETRI) and Hyundai Space & Aircraft Company(HYSA). The KOMPSAT MCE was installed in Korea Aerospace Research Institute(KARI) site for the KOMPSAT operation. In this paper, the orbit determination and maneuver planning are introduced and simulated for the KOMPSAT spacecraft in LEOP operation. Initial orbit determination using short arc tracking data and definitive orbit determination using multiple passes tracking data are performed. Orbit maneuvers for the altitude correction and inclination correction are planned for achieving the final mission orbit of the KOMPSAT.

  • PDF

Space Physics Sensor on KOMPSAT-1

  • Min, Kyoung-Wook;Choi, Young-Wan;Shin, Young-Hoon;Lee, Jae-Jin;Lee, Dae-Hee;Kim, Jhoon
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.355-360
    • /
    • 1998
  • A small package of plasma instruments, Space Physics Sensor, will monitor the space environment and its effects on microelectronics in the low altitude region as it operates on board the KOMPSAT-1 from 1999 over the maximum of the solar cycle 23. The Space Physics Sensor (SPS) consists of two parts: the Ionospheric Measurement Sensor (IMS) and the High Energy Particle Detector (HEPD). IMS will make in situ Measurements of the thermal electron density and temperature, and is expected to provide a global map of the thermal electron characteristics and the variability according to the solar and geomagnetic activity in the high altitude ionosphere of the KOMPSAT-t orbit. HEPD will measure the fluxes of high energy protons and electrons, monitor the single event upsets caused by these energetic charged particles, and give the information of the total radiation dose received by the spacecraft. The continuous operation of these sensors, along with the ground measurements such as incoherent scatter radars, digital ionosondes and other spacecraft measurements, will enhance our understanding of this important region of practical use for the low earth orbit satellites.

  • PDF

A Study on the Low Elevation Target Tracking under Multipath Conditions Using Laser Tracking System (레이저 추적기를 이용한 저고도 비행체 추적 기법 연구)

  • Yoo, Seung-Oh
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.572-580
    • /
    • 2015
  • RF skin tracking of instrumentation RADAR cannot acquire stable track data, because of effect of multipath interference especially elevation direction. In this paper, low altitude target tracking method using laser tracking system is suggested to overcome this restriction. The effect of multipath can be reduced by increasing angle resolution with laser characteristics of very short pulse and narrow beamwidth. RF skin track, beacon track and laser track data for the integrated calibration target on the ground and target ship on the sea are gathered. And they are compared and analyzed to confirm the performance of laser tracking system. As a result, it shows that the suggested laser track method has better performance than RF skin track under multipath conditions.

Conceptual Design of KSLV-II 3rd Stage Engine Test Facility (한국형발사체 3단 엔진 연소시험설비 개념설계)

  • Kim, Seung-Han;Chung, Yong-Gap;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.484-488
    • /
    • 2012
  • Korea Aerospace Research Institute (KARI) performed the conceptual design of rocket engine test facility for the development and qualification of the 3rd stage liquid rocket engine for KSLV-II. The 3rd stage rocket engine test facility, which are to be constructed at Naro Space Center, will supply propellants and high-pressure gases to engine for firing test at ground and altitude conditions. The altitude test condition is obtained using a supersonic diffuser operated by the self-ejecting jet from the liquid rocket engine.

  • PDF

Preliminary Results of Tissue-Equivalent Proportional Counter (TEPC) Dosimeter for Measuring In-Situ Aviation Radiation

  • Nam, Uk-won;Park, Won-kee;Hwang, Junga;Sohn, Jongdae;Moon, Bongkon;Kim, Sunghwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.249-255
    • /
    • 2020
  • We develop the tissue-equivalent proportional counter (TEPC) type's space radiation dosimeter to measure in-situ aviation radiation. That was originally developed as a payload of small satellite in the low-earth orbit. This dosimeter is based on a TEPC. It is made of an A-150 tissue-equivalent plastic shell of an internal diameter of 6 cm and a thickness of 0.3 cm. TEPC is filled with pure propane at 13.9 torrs to simulate a cell diameter of 2 ㎛. And the associated portable and low power electronics are also implemented. The verification experiments have been performed by the calibration experiments at ground level and compared with Liulin observation at aircraft altitude during the flight between Incheon airport (ICN) and John F. Kennedy airport (JFK). We found that the TEPC dosimeter can be used as a monitor for space radiation dosimeter at aviation altitude based on the verification with Liulin observation.