• Title/Summary/Keyword: Ground/Flight Test

Search Result 281, Processing Time 0.029 seconds

Implementation and Verification of System Integration Laboratory for Multiple Unmanned Aerial Vehicle Operation and Control Technology using Manned Rotorcraft (유인회전익기에 의한 다수 무인기 운용통제기술의 통합검증환경 구현 및 검증)

  • Hyoung Jin Kim;Sang Eun Kwon;Young Wo Jo;Bong Gyu Kim;Eun Kyoung Go
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.133-143
    • /
    • 2023
  • This paper describes the system integration laboratory's requirement analysis, implementation, and verification for multiple-scenario unmanned aerial vehicle operation and control technology using a manned rotorcraft for Manned-Unmanned Teaming. System integration laboratory consists of manned rotorcraft flight simulation, unmanned aerial vehicle flight and mission equipment simulation, ground control system simulation for unmanned aerial vehicle control and change in the control authority between the ground control system and manned rotorcraft, and operation and control system for mission plan's writing and transmission. Each implemented simulation verified the requirements through software and hardware integration test.

Aerodynamic Characteristics of a Variable-Span Wing Flying Inside a Channel II (Effect of Asymmetric Wing Extensions) (채널 내를 비행하는 가변스팬 날개 공력특성 II (비대칭 날개 펼침))

  • Han, Cheolheui
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.39-43
    • /
    • 2016
  • In this paper, a wind-tunnel test is accomplished to investigate the roll characteristics of a variable-span wing flying inside a channel. The factors that affect the roll characteristics of the wing were identified by analyzing the measured data; accordingly, when the wing is flying without both the ground and sidewall effects, the asymmetric wing extension causes the roll moment. Both the ground and the sidewall can increase the roll moment, but when the wing is affected by both the ground and the sidewall, the roll moment does not increase as much as the case where the wing is only affected by the ground. Also, the aerodynamic characteristics of the flying wing inside a channel are the nonlinear function of the wing height and the gap between the wingtip and the sidewall, both of which should be considered in a study of the stability and the flight control of the wing-in-ground effect of the vehicle flying inside a channel.

Preliminary Design of Supersonic Ground Test Facility (초음속 지상 추진 시험설비의 기본설계)

  • 이양지;차봉준;양수석;김형진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.13-19
    • /
    • 2003
  • A supersonic ground test facility to develop Ramjet and SCRamjet(Supersonic Combustion Ramjet) engine should be able to simulate high altitude and high Mach number conditions including air total pressure, oxygen level and specific heat ratio at the combustion chamber entrance. The test facility also should simulate the effect of oblique shock wave caused by the flight vehicle. The test facility developed in this study is supersonic free-jet blowdown type, which consists of high pressure air supply source(maximum pressure=32MPa), air heater(vitiation type), supersonic diffuser, ejector, and test chamber(nozzle exit dimension=200mm$\times$200mm).

  • PDF

Preliminary Design of Supersonic Ground Test Facility (초음속 지상 추진 시험설비의 기본설계기법 연구)

  • 이양지;차봉준;양수석;김형진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.53-62
    • /
    • 2003
  • A supersonic ground test facility to develop Ramjet and SCRamjet(Supersonic Combustion Ramjet) engine should be able to simulate high altitude and high Mach number conditions including air total pressure, oxygen level and specific heat ratio at the combustion chamber entrance. The test facility also should simulate the effect of oblique shock wave caused by the flight vehicle. The test facility developed in this study is supersonic free-jet blow down type, which consists of high pressure air supply source(maximum pressure=32MPa), air heater(vitiation type), supersonic diffuser, ejector, and test chamber(nozzle exit dimension=200mm${\times}$200mm).

Launch and Early Orbit Phase Simulations by using the KOMPSAT Simulator

  • Lee, Sanguk;Park, Wan-Sik;Lee, Byoung-sun;Lee, Ho-Jin;Park, Hanjun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.33-36
    • /
    • 1999
  • The KOMPSAT, which is scheduled to be launched by Taurus launch vehicle in late November of 1999, will be in a sun-synchronous orbit with an altitude of 685km, eccentricity of 0.001, inclination of 98deg and local time of ascending node of 10:50 a.m. Electronics and Telecommunications Research Institute and Daewoo Heavy Industry had jointly developed a KOMPSAT Simulator as a component of the KOMPSAT Mission Control Element. The MCE had been delivered to Korea Aerospace Research Institute for the KOMPSAT ground operation. It is being used for training of KOMPSAT ground station personnel. Each of satellite subsystems and space environment were mathematically modeled in the simulator. To verify the overall function of KOMPSAT simulator, a Launch and Early Orbit Phase(LEOP) operation simulations have been performed. The simulator had been verified through various tests such as functional level test, subsystem test, interface test, system test, and acceptance test. In this paper, simulation results for LEOP operations to verify flight software adapted into simulator, satellite subsystem models and environment models are presented.

  • PDF

Rapid Prototyping and Testing of 3D Micro Rockets Using Mechanical Micro Machining

  • Chu Won-Shik;Beak Chang-Il;Ahn Sung-Hoon;Cho Tae-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.85-93
    • /
    • 2006
  • The trend of miniaturization has been applied to the research of rockets to develop prototypes of micro rockets. In this paper, the development of a web-integrated prototyping system for three-dimensional micro rockets, and the results of combustion tests are discussed. The body of rocket was made of 6061 aluminum cylinder by lathe process. The three-dimensional micro nozzles were fabricated on the same aluminum by using micro endmills with ${\phi}100{\mu}m{sim}{\phi}500{\mu}m$ diameter. Two types of micro nozzle were fabricated and compared for performance. The total mass of the rockets was 7.32 g and that of propellant (gun powder) was 0.65 g. The thrust-to-weight ratio was between 1.58 and 1.74, and the flight test with 45 degree launch angle from the ground resulted in $46\;m{\sim}53\;m$ of horizontal flight distance. In addition, ABS housing for the micro machined rocket was fabricated using Fused Deposition Modeling (FDM). A web-based design, fabrication, and test system for micro nozzles was proposed to integrate the distributed hardware resources. Test data was sent to the designer via the same web server for the faster feedback to the rocket designer.

A Design and Application of the Ventilating and Heating System of T-103 Trainer Aircraft for Improvement (T-103 훈련기의 환기와 난방 시스템 개선에 관한 연구)

  • Jung, Daehan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.277-284
    • /
    • 2013
  • In this paper, the ventilating and heating system of T-103 trainer aircraft were investigated and redesigned to improve its poor performance. The ventilation system of the trainer was designed to increase the mass flow rate of fresh air by using air intake valves. The flow-in air through the air intake valve is supplied to the cabin by the ram effect of aircraft and the propeller. And the additional heating system was installed to improve the temperature of the cabin inside. The wasted heat from the exhaust gas of the engines was used as heat source of the additional heating system by installing an heat exchanger around the exhaust nozzle. The additional fresh air and the heated air enter the cabin via two ducts mounted under the instrument panel and behind the pedal in the cabin. The additional ventilating and heating system can be controlled by the first pilot and the secondary pilot individually using the control knob equipped separately. After mounting the additional ventilating and heating system, evaluations such as inspection of parts and component, ground run-up test, in-flight test, user test, etc. were conducted. The result of the tests was sufficient to meet the requirements of the manuals, and the pilots were satisfied with the additionally mounted systems.

Ground Vibration Test for Korea Sounding Rocket - III (KSR-III의 전기체 모달 시험)

  • 우성현;김영기;이동우;문남진;김홍배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.441-447
    • /
    • 2002
  • KSR-III(Korea Sounding Rocket - III), which is being developed by Space Technology R&D Division of KARI(Korea Aerospace Research Institute) will be launched in late 2002. It is a three-stage, liquid propellant rocket which can reach 250 km altitude and will carry out observation of ozone layer and scientific experiments, such as microgravity experiment, and atmospheric measurement. KSR-III is believed to be an intermediate to the launch vehicle capable of carrying a satellite to its orbit. Space Test Department of KARI performed GVT(Ground Vibration Test) fer KSR-III EM at Rocket Test Building of KARI. GVT is very important for predicting the behavior of rocket in its operation, developing flight control program and performing aerodynamic analysis. This paper gives an introduction of rocket GVT configuration and information on test procedures, techniques and results of It. In this test. to simulate free-free condition, test object hung in the air laterally by 4 bungee cords specially devised. For the excitation of test object, pure random signal by two electromagnetic shakers was used and total 22 frequency response functions were achieved. Polyreference parameter estimation was performed to identify the modal parameters with MIMO(Multi-Input-Multi-Output) method. As the result of the test, low frequency mode shapes and modal parameters below 60Hz were identified

  • PDF

Reconfigurable Simulator for Safety Evaluation of eVTOL Aircraft (eVTOL 항공기 안전성 평가를 위한 가변형 시뮬레이터 구축)

  • Hyeji Kim;Jeongmin Kim;Dayeon Yoon;Jongjun Ha;Dongjin Lee;Jangho Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.95-101
    • /
    • 2024
  • This paper aims to establish a reconfigurable flight simulation environment to conduct safety evaluation of various electric vertical take-off and landing (eVTOL) aircraft. Since the inceptor, aircraft dynamics model, and controller applied to each eVTOL aircraft are different, it was configured to be variable so that a simulation can be executed for each eVTOL aircraft. Test elements and performance indicators were set to perform safety evaluation of eVTOL aircraft. Ground auxiliary equipments were designed and implemented in a simulation environment according to test procedures for each test element. In addition, to analyze safety performance, a simulation flight data collection environment based on MATLAB/Simulink and a tool for safety performance analysis were implemented. Test flight and analysis were conducted in the implemented simulation environment in this paper. Finally, this study shows the environment was verified by confirming that it was performed normally.

Altitude Engine Test (고공 환경 엔진 시험)

  • Lee Jin-Kun;Kim Chun-Taek;Yang Soo-Seok;Lee Dae-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.104-111
    • /
    • 2005
  • Gas turbine engines for aircraft are usually operated at the altitude condition which is quite different from the ground condition. In order to measure the precise performance data at the altitude condition, the engine should be tested at the altitude condition by a real flight test or an altitude simulation test with an altitude test facility. In this paper, the present state of the altitude test facility and the test technologies at urn(Korea Aerospace Research Institute) will be introduced.