• Title/Summary/Keyword: Grinding spindle

Search Result 110, Processing Time 0.024 seconds

원통연삭 실험자료를 이용한 트래버스 연삭공정중의 형상예측 (Prediction of Form Accuracy during Traverse Grinding of Slender Workpiece Using the Cylindrical Prunge Grinding Data)

  • 박철우;이상조
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.174-183
    • /
    • 2000
  • Non-Parallelism the axial direction occurs during grinding process of long slender shafts. The reason for the axial error is due to elastic deformation of the components, accumulation phenomenon of the grinding and wheel wear during the grinding process. The accumulation phenomenon, the size generation mechanism and the wheel wear process during traverse grinding result in complicated process at each step on the wheel surface. The grinding system stiffness obtained from the stiffness of the center on the tailstock and the workpiece varing according to the relative position of the wheel and the workpiece. Further more, the value of wheel wear increases as the grinding process advances. The above mentioned issues make the shape generation process during traverse grinding quite complicated. This research analyzes the shape generation process in the direction of the work spindle. First, the formulation of the grinding system stiffness was conducted and the simulation analysis method of the traverse grinding was established. Also, a measuring system for assessing the dimensinal accuracy of the workpiece has been developed.

  • PDF

연삭시스템의 최적연삭가공조건 (The Optimum Grinding Condition Selection of Grinding System)

  • 이석우;최영재;허남환;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.563-564
    • /
    • 2006
  • In silicon wafer manufacturing process, the grinding process has been adopted to improve the flatness of water. The grinding of wafer is usually used by the infeed grinding machine. Grinding conditions are spindle speed, feed speed, rotation speed, grinding stone etc. But grinding condition selection and analysis is so difficult in grinding machine. In the intelligent grinding system based on knowledge many researchers have studied expert system, neural network, fuzzy etc. In this paper we deal grinding condition selection method, Taguchi method and Genetic Analysis.

  • PDF

CNC 그라인딩 센터의 개발 (Development of CNC Grinding Center)

  • 유정봉
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 춘계학술대회 논문집
    • /
    • pp.30-35
    • /
    • 1997
  • CNC Grinding Center is developed to improve the flexibility of grinding process and to obtain the high machine accuracy in grinding processes. It consists of a built-in type spindle with max. 25,000 rpm, ATC(automatic tool changer) for quick and reliable loading/unloading of tools, a rotary dresser for trueing, dressing, and personal computer based CNC controller, etc. This research concentrates on the machine structure, the evaluation of efficiency, and the machining technology of the developed prototype

  • PDF

Automatic Balancer를 이용한 연삭특성 연구 (A Study on the Grinding Characteristics using Automatic Balancer)

  • 김해지
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.498-501
    • /
    • 1999
  • Grinding machine rotating at high speed express the unbalance by the spindle and the weight of grinding wheel. Therefore, the parts requiring a precision processing for grinding machine need acutely to establish of automatic balancer. But the more wheel speed increases the more vibration amplitude increases, surface roughness show the satisfactory according to increase of the wheel speed. Surface roughness of the occasion installing the automatic balancer made better than an occasion no installing the automatic balancer.

  • PDF

자기베어링지지 연삭기 추축계의 고속 회전시 런아웃 적응제어 (Adaptive Runout Control of Magnetically Suspended High Speed Grinder Spindle)

  • 노승국;경진호;박종권;최언돈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.52-55
    • /
    • 1997
  • In this paper, the case study of reducing rotational errors is done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well-finished surface; this runout can cause a rotation error amplified by feedback control system. The adaptive feedforward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The rotor orbit size in both bearings is reduced about to 5 pin due to lX rejection by feedforward control up to 50, 000 rpm.

  • PDF

Structural Characteristic Analysis of a High-precision Centerless Grinding Machine with a Concrete-filled Bed

  • Kim, Seok-Il;Cho, Jae-Wan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권4호
    • /
    • pp.34-39
    • /
    • 2006
  • High-precision centerless grinding machines are emerging as a means of finishing the outer diameter grinding process required for ferrules, which are widely used as fiber optic connectors. In this study, a structural characteristic analysis and evaluation were carried out using a virtual prototype of a centerless grinding machine to realize systematic design technology and performance improvements required to manufacture ferrules. The prototype consisted of a concrete-filled bed, hydrostatic grinding wheel (GW) and regulating wheel (RW) spindle systems, a hydrostatic RW feed mechanism, a RW swivel mechanism, and on-machine GW and RW dressers. The loop stiffness values of the centerless grinding machine were estimated based on the relative displacements between the GW and RW caused by grinding forces. The simulated results illustrated that a concrete-filled bed considerably improved the structural stiffness and accuracy of a high-precision centerless grinding machine.

페룰 가공용 초정밀 무심 연삭기의 열 특성 해석 (Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules)

  • 김석일;조재완
    • 한국정밀공학회지
    • /
    • 제23권1호
    • /
    • pp.193-200
    • /
    • 2006
  • To perform the finish grinding process of ferrules which are widely used as fiber optic connectors, a high-precision centerless grinding machine is necessary. The high-precision centerless grinding machine is consisted of the hydrostatic GW and RW spindle systems, hydrostatic RW feeding mechanism, RW swivel mechanism, on-machine GW and RW dressers, and concrete-filled steel bed. In this study, the thermal characteristics of the high-precision centerless grinding machine such as the temperature distribution, temperature rise and thermal deformation, are estimated based on the virtual prototype of the grinding machine and the heat generation rates of heat sources related to the machine operation conditions. The reliability of the predicted results is demonstrated by the temperature characteristics measured from the physical prototype. Especially, the predicted and measured results show the fact that the high-precision centerless grinding machine has very stable thermal characteristics.

콘크리트 층진 베드를 적용한 초정밀 무심 연삭기의 구조 해석 (Structural Characteristic Analysis of a High-Precision Centerless Grinding Machine with Concrete-Filled Bed)

  • 김석일;조재완
    • 한국정밀공학회지
    • /
    • 제22권2호
    • /
    • pp.172-179
    • /
    • 2005
  • A high-precision centerless grinding machine has been recognized as a core equipment performing the finish outer-diameter grinding process of ferrules which are widely used as fiber optic connectors. In this study, in order to realize the high-precision centerless grinding machine, the structural characteristic analysis and evaluation are carried out on the virtual prototype consisted of the steel bed, hydrostatic GW and RW spindle systems, hydrostatic RW feed mechanism, RW swivel mechanism, and on-machine GW and RW dressers. The loop stiffnesses of centerless grinding machine are estimated based on the relative deformations between GW and RW caused by the grinding forces. And the simulated results illustrate that the concrete-filled bed has the considerable effect on the improvement of the structural stiffness of centerless grinding machine.

Ultrasonically Assisted Grinding for Mirror Surface Finishing of Dies with Electroplated Diamond Tools

  • Isobe, Hiromi;Hara, Keisuke;Kyusojin, Akira;Okada, Manabu;Yoshihara, Hideo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.38-43
    • /
    • 2007
  • This paper describes ultrasonically assisted grinding used to obtain a glossy surface quickly and precisely. High-quality surfaces are required for plastic injection molding dies used in the production of plastic parts such as dials for cellular phones. Traditionally, in order to finish the dies, manual polishing by a skilled worker has been required after the machining processes, such as electro discharge machining (EDM), which leaves an affected layer, and milling, which leaves tooling marks. However, manual polishing causes detrimental geometrical deviations of the die and consumes several days to finish a die surface. Therefore, a machining process for finishing dies without manual polishing to improve the surface roughness and form accuracy would be extremely valuable. In this study, a 3D positioning machine equipped with an ultrasonic spindle was used to conduct grinding experiments. An electroplated diamond tool was used for these experiments. Generally, diamond tools cannot grind steel because of excessive wear as a result of carbon atoms diffusing into bulk steel and chips. However, ultrasonically assisted grinding can achieve a fine surface (roughness Rz of $0.4{\mu}m$) on die steel without severe tool wear. The final aim of this study is to realize mirror surface grinding for injection molding dies without manual polishing. To do this, it is necessary to fabricate an electroplated diamond tool with high form accuracy and low run-out. This paper describes a tool-making method for high precision grinding and the grinding performance of a self-electroplated tool. The ground surface textures, tool performance and tool life were investigated A ground surface roughness Rz of 0.14 um was achieved Our results show that the spindle speed, feed rate and cross feed affected the surface texture. One tool could finish $5000mm^2$ of die steel surface without any deterioration of the ground surface roughness.