• Title/Summary/Keyword: Grinding spindle

Search Result 110, Processing Time 0.029 seconds

Design and Performance Evaluation of a Spindle System for Centerless Grinding Machine (무심연삭기 주축계의 설계 및 성능평가)

  • Park Chun Hong;Hwang Joo Ho;Cho Soon Joo;Cho Chang Rae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.142-150
    • /
    • 2005
  • Design and performance evaluation of a spindle system which was composed of a grinding spindle and a regulating spindle for the centerless grinding of ferrule were performed in this paper. Layout and details of spindle system were designed and hydrostatic bearings for spindles were also designed. Prototype of spindle system was developed and its availabilities to machine the ferrule were discussed using the experimental results on the spindle stiffness of each spindle, loop stiffness, rotational accuracy and thermal characteristics. Loop stiffness of the spindle system was $130\;N/{\mu}m$, which was enough to machine the ferrule. Rotational accuracies of each spindle were about $0.2{\mu}m$ at the primary speed of 2,300 rpm(grinding spindle) and 300 rpm(regulating spindle). Temperature rises at the same speed were about $4.4\~4.7^{\circ}C$ in the case of grinding spindle and $1.8^{\circ}C$ in the case of regulating spindle, which agreed well with the designed value. From these results, it was estimated that the prototype of spindle system had enough performances for the centerless grinding machine to machine the ferrule.

Design and Estimation of a Spindle System for Centerless Grinding Machine (무심연삭기 주축계의 설계 및 성능평가)

  • Park C.H.;Hwang J.H.;Oh Y.J.;Cho S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.86-89
    • /
    • 2005
  • Design and estimation of a spindle system which was composed of grinding spindle and regulating spindle for the centerless grinding of ferrule was performed and prototypes of each spindle were manufactured. Loop stiffness of the spindle system was 130 N/${\mu}m$. Although the value was lower than the target value of 150 N/${\mu}m$, as there included 20% of the safety factor, it was enough to machine the ferrule. Rotational accuracies of each spindle were about 0.2${\mu}m$ at the primary speed of 2,300 rpm(grinding spindle) and 300 rpm(regulating spindle). Temperature rises at the same speed were about $4.4\;\~\;4.7^{\circ}C$ in the case of grinding spindle and $1.8^{\circ}C$in the case of regulating spindle, which were well agreed with the designed value. From these results, it was estimated that the prototype of spindle system had a enough performances for the centerless grinding machine to machine the ferrule.

  • PDF

Dynamic Chanrateristics of Spindle for the External Cylindrical Grinding Machine Considered the Shell Mode Vibration of Wheel (Wheel의 원반 진동을 고려한 외경연삭 주축의 동특성)

  • 하재훈;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1000-1004
    • /
    • 1995
  • In the case of the external cylindrical grinding machine, the grinding mechanism can cause a wheel to vibrate due to a wheel cutter. This phenomena will bring about the unsymmetric wear up to high frequency without any relation of rotational speed. So far, when the grinding spindle is analyzed, it is assumed that a wheel is considered as lumped mass at the endof a beam. Nowadays, there is a tendency to use the wheel with a lsrge diameter or CBN wheel to achieve the high speed and accuracy grinding performance. Therefore, this kind of assumption is no longer valid. At the analysis of the grinding spindle, the parameter which dapends on the dynamic characteristics is a combination force between each part. For example, there is the tightness torque of a bolt and taper element in the grindle. In addition, the material property of the wheel can contribute the dynamic characteristics. This paper shows the mode participation of the shell mode of the wheel in the grindle and the dynamic characteristics according to the parameters which are the configuration of the flange and tightness torque of a bolt and taper. Modal parameter of the wheel, flange and the spindle can be extracted through frequency response function obtained by modal test. After that, by changing the tightness torque and kinds of wheel, we could accomplish the test in the whole combined grinding spindle. To perform modal analysis of vibration characteristics in the grinding spindle, we could develop the model of finite element method.

  • PDF

Dynamic Analysis of External Cylindrical Grinding Considering Spindle and Workpiece Vibrations (연삭숫돌 주축 및 공작물 회전체 진동을 고려한 원통 연삭 가공의 동특성 해석)

  • 최상현;김덕현;안유민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.192-198
    • /
    • 2000
  • This paper presents multi degree analysis of self-exited vibration of grinding system including spindle and workpiece rotational effect. The governing equations are derived by applying the finite element method to structure of spindle and workpiece rotor and by estimating the grinding force. Vibration analysis is carried out for external cylindrical plunge grinding. Displacement of workpiece and grinding force is simulated with machining time. Using this model, effects of characteristics of spindle bearing and major grinding conditions on chatter growth rate are predicted. Some of results are compared with those of other previous model and show good agreements.

  • PDF

The development of Centerless Grinder for Ferrule Grinding (페룰 가공용 초정밀 센터리스 연삭기 개발)

  • CHO S.J.;EBIHARA EBIHARA;TSUKISHIMA TSUKISHIMA;YOON J.S.;CHO C.R.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.6-9
    • /
    • 2005
  • In this study, the ultra precision centerless grinder for ferrule grinding was designed. As the good-qualified ferrule is required a precise and fine grinding, grinding machine for ferrule must have a high accuracy and a sufficient stiffness. The centerless grinder is composed of the high damping concrete bed, grinding wheel spindle unit, regulating wheel spindle unit, feeding table and dressing unit. For a newly developed centerless grinder, hydrostatic system with high precision feeding and high stiffness was proposed. The grinding and regulating wheel spindle units were composed of hydrostatic spindle and feeding table was hydrostatic table. The prototype of hydrostatic table was manufactured and tested.

  • PDF

A Study on the Machining characteristics in the Cylindrical Plunge Grinding using Spindle Motor Current Signal (주축모터전류신호를 이용한 원통 연삭시 가공 특성에 관한 연구)

  • 김남훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.507-512
    • /
    • 1999
  • In modern engineering practice, the grinding process is one of the most important and widely used operations for the precision finishing of components. In this paper, machining characteristics of external plunge grinding were investigated by using spindle motor current signal through hall sensor. Grinding experiments were performed in terms of various grinding conditions such as wheel speed, workpiece speed, infeed rate and spark-out time with conventional vitrified bonded WA wheel. The relationship between spindle motor current signal and metal removal rate in terms of infeed rate was induced the by analyzing spindle motor current signal.

  • PDF

A Basic Study of High Precision Spindle Design for Micro-Glass Lens Grinding (마이크로 렌즈 연삭기용 주축설계 및 제작에 관한 기초연구)

  • 김의중;한정훈;박상일;송승훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.57-60
    • /
    • 2002
  • The high precision spindle is essential fer mass and low cost production of aspherical glass lens. Especially, in the grinding process of micro glass lens the performance of the spindle determine the machined surface quality. For the aspheric micro glass lens grinding, we design and make a high precision spindle. We use air bearings for high speed and low motion errors of the spindle. And the driving mechanism is an air turbine to remove heat generation. In this study, we make basic performance requirements of the spindle through benchmarking. And we confirm the requirements by basic machining test. We test air consumption, static stiffness, run-out and vibration of the spindle.

  • PDF

Development of ELID Monitoring System and its Application to ELID Grinding of Structural Ceramics (ELID 연삭 모니터링 시스템의 개발과 구조 세라믹스 적용 사례)

  • Kwak, Tae-Soo;Kim, Gyung-Nyun;Kwak, Ihn-Sil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1245-1251
    • /
    • 2013
  • This study has focused on development of ELID monitoring system and its application to ELID grinding of structural ceramics. ELID monitoring system was consisted of grinding equipment, ELID power supply, grinding wheel, electrode and monitoring program. It can give a real time data to check spindle grinding resistance, wheel revolution, dressing current and voltage in ELID grinding process. The performance of developed system was evaluated by applying to grinding of structural ceramics, silicon carbide and alumina. As the results of experiments, monitored data for spindle resistance and ELID dressing current was useful to check steady-state ELID grinding process. From the comparison of spindle resistance between ELID grinding and conventional grinding process according to change of depth of cut, it could be confirmed that the spindle resistance in ELID grinding was lower than conventional grinding process.

Effects of Flange Joint on the Dynamic Characteristics of the External Cylindrical Grinding Wheel Spindle (외경연삭 휠 주축의 진동특성에 미치는 플랜지 결합부의 영향)

  • Kim, Sun-Min;Ha, Jae-Hoon;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.118-125
    • /
    • 1999
  • In the grinding process, generally, the exciting forces with high frequency can be generated due to the wheel wear and the grinding process. As the grinding speed increases, the precise investigation about the wheel dynamic characteristics is required. Conventionally the wheel-spindle has been considered with lumped model in dynamic modeling. With this lumped model, the significant mode resulted from the shell mode of wheel can be readily ignored. This paper suggests the new analysis model which includes the shell mode of wheel in modeling the wheel-spindle assembly. Furthermore, based on the suggested model, the effects of the bolt tightening force and the taper tightening force on the dynamic properties are investigated by the finite element modal analysis and the experimental method. As a result of investigation, the shell mode vibration of wheel affects the dynamic characteristics of the spindle assembly. Also, the vibration modes of the spindle assembly are significantly affected by the joint tightening forces.

  • PDF

Design of a Centerless Grinder for Ferrule Grinding (페룰 가공용 Centerless Grinder 설계)

  • Cho, Soon-Joo;Kim, Hyung-Gil;Cho, Chang-Rae
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1087-1091
    • /
    • 2004
  • In this study, the ultra precision centerless grinder for ferrule grinding was designed. The centerless grinder is composed of the high damping concrete bed, grinding wheel spindle unit, regulating wheel spindle unit, feeding table and dressing unit. For a newly developed centerless grinder, hydrostatic system with high precision feeding and high stiffness was proposed. The grinding and regulating wheel spindle units were composed of hydrostatic spindle and feeding table was hydrostatic table. The prototype of hydrostatic table was manufactured and tested.

  • PDF