• 제목/요약/키워드: Grid regulation

검색결과 127건 처리시간 0.029초

Effect Analysis for Frequency Recovery of 524 MW Energy Storage System for Frequency Regulation by Simulator

  • Lim, Geon-Pyo;Choi, Yo-Han;Park, Chan-Wook;Kim, Soo-Yeol;Chang, Byung-Hoon;Labios, Remund
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권2호
    • /
    • pp.227-232
    • /
    • 2016
  • To test the effectiveness of using an energy storage system for frequency regulation, the Energy New Business Laboratory at KEPCO Research Institute installed a 4 MW energy storage system (ESS) demonstration facility at the Jocheon Substation on Jeju Island. And after the successful completion of demonstration operations, a total of 52 MW ESS for frequency regulation was installed in Seo-Anseong (28 MW, governor-free control) and in Shin-Yongin (24 MW, automatic generation control). The control system used in these two sites was based on the control system developed for the 4 MW ESS demonstration facility. KEPCO recently finished the construction of 184 MW ESS for frequency regulation in 8 locations, (e.g. Shin-Gimjae substation, Shin-Gaeryong substation, etc.) and they are currently being tested for automatic operation. KEPCO plans to construct additional ESS facilities (up to a total of about 500 MW for frequency regulation by 2017), thus, various operational tests would first have to be conducted. The high-speed characteristic of ESS can negatively impact the power system in case the 500 MW ESS is not properly operated. At this stage we need to verify how effectively the 500 MW ESS can regulate frequency. In this paper, the effect of using ESS for frequency regulation on the power system of Korea was studied. Simulations were conducted to determine the effect of using a 524 MW ESS for frequency regulation. Models of the power grid and the ESS were developed to verify the performance of the operation system and its control system. When a high capacity power plant is tripped, a 24 MW ESS supplies power automatically and 4 units of 125MW ESS supply power manually. This study only focuses on transient state analysis. It was verified that 500 MW ESS can regulate system frequency faster and more effectively than conventional power plants. Also, it was verified that time-delayed high speed operations of multiple ESS facilities do not negatively impact power system operations. It is recommended that further testing be conducted for a fleet of multiple ESSs with different capacities distributed over multiple substations (e.g. 16, 24, 28, and 48 MW ESS distributed across 20 substations) because each ESS measures frequency individually. The operation of one ESS facility will differ from the other ESSs within the fleet, and may negatively impact the performance of the others. The following are also recommended: (a) studies wherein all ESSs should be operated in automatic mode; (b) studies on the improvement of individual ESS control; and (c) studies on the reapportionment of all ESS energies within the fleet.

Implementation of a High Efficiency Grid-Tied Multi-Level Photovoltaic Power Conditioning System Using Phase Shifted H-Bridge Modules

  • Lee, Jong-Pil;Min, Byung-Duk;Yoo, Dong-Wook
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.296-303
    • /
    • 2013
  • This paper proposes a high efficiency three-phase cascaded phase shifted H-bridge multi-level inverter without DC/DC converters for grid-tied multi string photovoltaic (PV) applications. The cascaded H-bridge topology is suitable for PV applications since each PV module can act as a separate DC source for each cascaded H-bridge module. The proposed phase shifted H-bridge multi-level topology offers advantages such as operation at a lower switching frequency and a lower current ripple when compared to conventional two level topologies. It is also shown that low ripple sinusoidal current waveforms are generated with a unity power factor. The control algorithm permits the independent control of each DC link voltage with a maximum power point for each string of PV modules. The use of the controller area network (CAN) communication protocol for H-bridge multi-level inverters, along with localized PWM generation and PV voltage regulation are implemented. It is also shown that the expansion and modularization capabilities of the H-bridge modules are improved since the individual inverter modules operate more independently. The proposed topology is implemented for a three phase 240kW multi-level PV power conditioning system (PCS) which has 40kW H-bridge modules. The experimental results show that the proposed topology has good performance.

승객 이명감 기준을 만족하는 고속철도 터널 최소 단면적에 대한 연구 (A STUDY ON THE MINIMUM CROSS-SECTIONAL AREA OF HIGH-SPEED RAILWAY TUNNEL SATISFYING PASSENGER EAR DISCOMFORT CRITERIA)

  • 권현빈
    • 한국전산유체공학회지
    • /
    • 제20권3호
    • /
    • pp.62-69
    • /
    • 2015
  • Pressure change inside cabin as well as in tunnel has been calculated to assess the passenger pressure comfort of high-speed train. $C-STA^{TM}$, a CFD program based on axi-symmetric Navier-Stokes equation and Roe's FDS has been used to simulate the pressure change in tunnel during a high-speed train passing through it. To present the relative motion between the train and the tunnel, a modified patched grid scheme based on the structured grid system has been employed. The simulation program has been validated by comparing the simulation results with field measurements. Extensive parametric study has been conducted for various train speed, tunnel cross-sectional area and tunnel length to the pressure change in cabin. KTX-Sancheon(KTX2) high-speed train has been chosen for simulation and the train speed have been varied from 200 km/h to 375 km/h. The tunnel length has been varied from 300 m to 7.5 km and tunnel area from $50m^2$ to $120m^2$. Total 504 simulations have been conducted varying the parameters. Based on the database produced from the parametric simulations, minimum tunnel cross-sectional area has been surveyed for various train speeds based on Korean regulation on pressure change in cabin.

Power Conditioning System for a Grid Connected PV Power Generation Using a Quasi-Z-Source Inverter

  • Park, Jong-Hyoung;Kim, Heung-Geun;Nho, Eui-Cheol;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • 제10권1호
    • /
    • pp.79-84
    • /
    • 2010
  • This paper presents a grid connected photo-voltaic system using a quasi-Z-source inverter (QZSI) for power stage reduction. The power stage can be reduced because of an additional shoot-through stage which is a characteristic of QZSI. Therefore, by utilizing a QZSI the system's efficiency can be increased. In this paper, for applying a QZSI to a PV system, control methods such as maximum power point tracking (MPPT), point of common coupling (PCC) current control and PWM are studied and verified through simulation and experiment. In order to explain the above controllers, the characteristics of a QZSI are first analyzed. Then the MPPT control technique with a modified P&O method, the PCC current control for the regulation of the dc-link capacitor voltage and the PWM methods for the proposed system are explained. The feasibility of the proposed algorithm is verified through simulation and experiment with a 3kW system.

2단 DC-DC 컨버터로 구성된 배터리 에너지저장용 계통연계형 전력변환장치 (Grid-tied Power Conditioning System for Battery Energy Storage Composed of 2-stage DC-DC converter)

  • 박아련;김도현;김경태;한병문;이준영
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1848-1856
    • /
    • 2012
  • This paper proposes a new grid-tied power conditioning system for battery energy storage, which is composed of a 2-stage DC-DC converter and a PWM inverter. The 2-stage DC-DC converter is composed of an LLC resonant converter connected in cascade with a 2-quadrant hybrid-switching chopper. The LLC resonant converter operates in constant duty ratio, while the 2-quadrant hybrid-switching chopper operates in variable duty ratio for voltage regulation. The operation of proposed system was verified through theoretical analysis and computer simulations. Based on computer simulations, a hardware prototype was built and tested to confirm the technical feasibility of proposed system. The proposed system could have relatively higher efficiency and smaller size than the existing system.

스마트그리드 기반의 실시간요금제 및 DR운영시스템 구현 (A Development of Demand Response Operation System and Real-Time Pricing based on Smart Grid)

  • 고종민;송재주;김영일;정남준;김상규
    • 전기학회논문지
    • /
    • 제59권11호
    • /
    • pp.1964-1970
    • /
    • 2010
  • A new intelligent power network (Smart Grid) that grafts some new technologies, such as the extension of the new and reproducible energy, electric motors, and electric storages, onto the regulation of green house gases according to the recent convention on climate changes has been actively promoted. As establishing such an intelligent power network, it is possible to implement a real-time rate system according to the change from the conventional single directional information transmission to the bidirectional information transmission. Such a real-time rate system can provide power during the chip rate hour by avoiding the high rate hour although customers use the same level of power through providing such real-time rate information including power generation costs. In this study, the establishment of an operating system that makes an effective use of the real-time rate system and its operation method are to be proposed.

V2G 전기자동차의 부하관리 자원 활용을 위한 적정 지원금 산정에 관한 연구 (A Study on the Decision of Appropriate Subsidy Levels Regarding Electric Vehicles for V2G as Load Management Resources)

  • 김정훈;황성욱
    • 전기학회논문지
    • /
    • 제65권2호
    • /
    • pp.264-268
    • /
    • 2016
  • Recently, various energy efficiency optimization activities are ongoing globally by integrating conventional grids with ICT (Information and Communication Technology). In this sense, various smart grid projects, which power suppliers and consumers exchange useful informations bilaterally in real time, have been being carried out. The electric vehicle diffusion program is one of the projects and it has been spotlighted because it could resolve green gas problem, fuel economy and tightening environmental regulations. In this paper, the economics of V2G system which consists of electric vehicles and the charging infrastructure is evaluated comparing electric vehicles for V2G with common electric vehicles. Additional benefits of V2G are analyzed in the viewpoint of load leveling, frequency regulation and operation reserve. To find this benefit, electricity sales is modeled mathematically considering depth of discharge, maximum capacity reduction, etc. Benefit and cost analysis methods with the modeling are proposed to decide whether the introduction of V2G systems. Additionally, the methods will contribute to derive the future production and the unit cost of electric vehicle and battery and to get the technical and economic analysis.

빠른 응답성을 갖는 가변속 DFIM 분석 (Analysis of Doubly Fed Variable-Speed Pumped Storage Hydropower Plant for Fast Response)

  • 손금뢰;서정진;차한주
    • 전력전자학회논문지
    • /
    • 제27권5호
    • /
    • pp.425-430
    • /
    • 2022
  • A pumped storage power station is an important means to solve the problem of peak load regulation and ensures the safety of power grid operation. The doubly fed variable-speed pumped storage (DFVSPS) system adopts a doubly fed induction machine (DFIM) to replace the synchronous machine used in traditional pumped storage. The stator of DFIM is connected to the power grid, and the three-phase excitation windings are symmetrically distributed on the rotor. Excitation current is supplied by the converter. The active and reactive power of the unit can be quickly adjusted by adjusting the amplitude, frequency, and phase of the rotor-side voltage or current through the converter. Compared with a conventional pumped storage hydropower station (C-PSH), DFVSPS power stations have various operating modes and frequent start-up and shutdown. This study introduces the structure and principle of the DFVSPS unit. Mathematical models of the unit, including a model of DFIM, a model of the pump-turbine, and a model of the converter and its control, are established. Fast power control strategies are proposed for the unit model. A 300 MW model of the DFVSPS unit is established in MATLAB/Simulink, and the response characteristics in generating mode are examined.

한반도의 지진재해도 작성연구 (A Study on Seismic Hazard Map of Korea)

  • 김성균
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.11-26
    • /
    • 1997
  • It has knows that the seismicity of the Korean Peninsula is relatively inactive than those of adjacent northern China and southwestern Japan. Recently the review of long term historical records and recent seismicity. In addition, it is considered that the modern society is more vulnerable to seismic hazard because of high urbanization and industrialization. From this viewpoint, the improvement and modification of the present regulation for aseismic design is strongly proposed. The purpose of the present study is to prepare seismic hazard maps for Korea to be used in improving the present regulation. The present study was performed as a cooperative project of eight Korean seismologists. Each seismologist calculated independently seismic hazard value at the given grid points based on his own judgement about methodology and seismicity. Then the values are unified with equal weight to produce a seismic hazard map. Seven seismic hazard maps for peak acceleration with 10 percentile probability of exceedance in 5, 10, 20, 50, 100, 250, 500 years are presented. This probability of exceedancd in such years corresponds to return period of 48, 95, 190, 475, 950, 2373, 4747 years, respectively. It is recommended to use a hazard map to be selected on the basis of the importance and the design level of structures.

  • PDF

고효율 저공해 열병합발전 하이브리드 시스템 개발 (Development of High Efficiency and Low Pollutant Cogeneration Hybrid System)

  • 최재준;김혁주;정대헌;박화춘
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1031-1035
    • /
    • 2008
  • The importance of the more efficient cogeneration system is emphasized. Also the more clean energy is needed at recent energy system. The cogeneration system using Lean burn engine is more preferred to the system using Rich burn engine because of the electrical efficiency. Although the cogeneration system using Lean burn engine is economically preferred, because of the NOx emission level, the system using Rich burn engine with 3-way catalyst can only be used in Korea. The NOx regulation level is 50ppm at oxygen level 13%. The cogeneration hybrid system is consist of Lean burn gas engine, afterburner, boiler, economizer, DeNOx catalyst, combustion catalyst, absorption chiller, cooling tower and grid connection system. The system was accurately evaluated and the result is following ; 90% total efficiency, below 10ppm NOx, 50ppm CO, 25ppm UHC. The cogeneration hybrid system can meet the NOx level and exhaust gas regulation. It can achieve the clean combustion gas and efficient cogeneration system.

  • PDF