• Title/Summary/Keyword: Grid regulation

Search Result 127, Processing Time 0.027 seconds

A Detection Method of Grid Voltage for Grid Support Operation of an Inverter-based Renewable Energy Generation System (인버터 기반 신재생 에너지 발전 시스템의 계통 지원 운전을 위한 계통 전압 검출 방법)

  • Ahn, Hyun-Chul;Song, Seung-Ho
    • New & Renewable Energy
    • /
    • v.9 no.2
    • /
    • pp.51-57
    • /
    • 2013
  • The Grid code is being strengthen as increase of renewable energy ratio. Especially, the grid connection regulations are continuously being updated for stable operation of power grids. Static grid support and Dynamic grid support must make an accurate measure at Grid connected point because they needs control algorithm individually. It has to exactly measure voltage including switching ripple at the output of the inverter generating system. In addition, it is necessary to have an accurate voltage measurement when the situation rapidly changing the grid impedance is caused by the input of serial impedance of transformer and line impedance as well as Grid Fault Device. In this paper, We propose a new detection method of grid voltage to calculate accurately the r.m.s voltage of the grid connection point along the standard required by the low voltage regulation. We verified performance through simulation grid fault device.

The control of maximum power output for a grid-connected wind turbine system by using pitch control method (피치 제어를 이용한 계통연계 풍력발전 시스템의 최대출력 제어)

  • Ryu, Haeng-Soo;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.159-161
    • /
    • 2001
  • This study is for the pitch control of blade, used in most horizontal-axis wind turbine systems, to sustain the maximum power output supplied to grid. The control of a blade can be divided into a stall regulation and a pitch control methods. The stall regulation method using an aerodynamic stall is simple and cheap, but it suffers from fluctuation of the resulting power. Pitch control method is mechanically and mathematically complicated, but the control performance is better than that of the stall regulation method. In this paper 2.5MW MOD-2 wind turbine system is adopted to be controlled by a pitch controller with PI method. The simulation performed by MA TLAB will show the variation of frequency, generator output, and pitch angle.

  • PDF

High-Efficiency Power Conditioning System for Grid-Connected Photovoltaic Modules

  • Choi, Woo-Young;Choi, Jae-Yeon
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.561-567
    • /
    • 2011
  • This paper presents a high-efficiency power conditioning system (PCS) for grid-connected photovoltaic (PV) modules. The proposed PCS consists of a step-up DC-DC converter and a single-phase DC-AC inverter for the grid-connected PV modules. A soft-switching step-up DC-DC converter is proposed to generate a high DC-link voltage from the low PV module voltage with a high-efficiency. A DC-link voltage controller is presented for constant DC-link voltage regulation. A half-bridge inverter is used for the single-phase DC-AC inverter for grid connection. A grid current controller is suggested to supply PV electrical power to the power grid with a unity power factor. Experimental results are obtained from a 180 W grid-connected PV module system using the proposed PCS. The proposed PCS achieves a high power efficiency of 93.0 % with an unity power factor for a 60 Hz / 120 Vrms AC power grid.

Improved DPC Strategy of Grid-connected Inverters under Unbalanced and Harmonic Grid Conditions

  • Shen, Yongbo;Nian, Heng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.169-175
    • /
    • 2014
  • This paper presents an improved direct power control (DPC) strategy for grid-connected voltage source inverter (VSI) under unbalanced and harmonic grid voltage conditions. Based on the mathematic model of VSI with the negative sequence, 5th and 7th harmonic voltage components consideration, a PI controller is used in the proposed DPC strategy to achieve the average output power regulation. Furthermore, vector PI controller with the resonant frequency tuned at the two times and six times grid fundamental frequency is adopted to regulate both negative and harmonic components, and then two alternative targets of the balanced/sinusoidal current and smooth active/reactive output power can be achieved. Finally, simulation results based on MATLAB validate the availability of the proposed DPC strategy.

Hierarchical Voltage Regulation of a DFIG-based Wind Power Plant Using a Reactive Current Injection Loop with the Maximum Voltage Dip for a Grid Fault (최대 전압 강하에 비례하는 무효전류 공급 루프를 이용한 DFIG 풍력단지의 계층전압제어)

  • Park, Geon;Kim, Jinho;Kang, Yong Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1334-1339
    • /
    • 2016
  • In a power grid that has a high wind power penetration, the fast voltage support of a wind power plant (WPP) during the grid fault is required to stabilize the grid voltage. This paper proposes a voltage control scheme of a doubly-fed induction generator (DFIG)-based WPP that can promptly support the voltage of the point of common coupling (PCC) of a WPP during the grid fault. In the proposed scheme, the WPP and DFIG controllers operate in a voltage control mode. The DFIG controller employs two control loops: a maximum voltage dip-dependent reactive current injection loop and a reactive power to voltage loop. The former injects the reactive power in proportion to the maximum voltage dip; the latter injects the reactive power in proportion to the available reactive power capability of a DFIG. The former improves the performance of the conventional voltage control scheme, which uses the latter only, by increasing the reactive power as a function of the maximum voltage dip. The performance of the proposed scheme was investigated for a 100-MW WPP consisting of 20 units of a 5-MW DFIG under various grid fault scenarios using an EMTP-RV simulator. The simulation results indicate that the proposed scheme promptly supports the PCC voltage during the fault under various fault conditions by increasing the reactive current with the maximum voltage dip.

Affording Emotional Regulation of Distant Collaborative Argumentation-Based Learning at University

  • POLO, Claire;SIMONIAN, Stephane;CHAKER, Rawad
    • Educational Technology International
    • /
    • v.23 no.1
    • /
    • pp.1-39
    • /
    • 2022
  • We study emotion regulation in a distant CABLe (Collaborative Argumentation Based-Learning) setting at university. We analyze how students achieve the group task of synthesizing the literature on a topic through scientific argumentation on the institutional Moodle's forum. Distinguishing anticipatory from reactive emotional regulation shows how essential it is to establish and maintain a constructive working climate in order to make the best out of disagreement both on social and cognitive planes. We operationalize the analysis of anticipatory emotional regulation through an analytical grid applied to the data of two groups of students facing similar disagreement. Thanks to sharp anticipatory regulation, group 1 solved the conflict both on the social and the cognitive plane, while group 2 had to call out for external regulation by the teacher, stuck in a cyclically resurfacing dispute. While the institutional digital environment did afford anticipatory emotional regulation, reactive emotional regulation rather occurred through complementary informal and synchronous communication tools. Based on these qualitative case studies, we draw recommendations for fostering distant CABLe at university.

Innovative Model-Based PID Control Design for Bus Voltage Regulation with STATCOM in Multi-Machine Power Systems (STATCOM을 사용한 다기 전력 계통의 버스 전압 조절을 위한 모델 기반 PID 제어기 설계)

  • Kim, Seok-Kyoon;Lee, Young Il;Song, Hwachang;Kim, Jung-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.299-305
    • /
    • 2013
  • The complexity and severe nonlinearity of multi-machine power systems make it difficult to design a control input for voltage regulation using modern control theory. This paper presents a model-based PID control scheme for the regulation of the bus voltage to a desired value. To this end, a fourth-order linear system is constructed using input and output data obtained using the TSAT (Transient Security Assessment Tool); the input is assumed to be applied to the grid through the STATCOM (STATic synchronous COMpensator) and the output from the grid is a bus voltage. On the basis of the model, it is identified as to which open-loop poles of the system make the response to a step input oscillatory. To reduce this oscillatory response effectively, a model-based PID control is designed in such a way that the oscillatory poles are no longer problematic in the closed loop. Simulation results show that the proposed PID control dampens the response effectively.

SOC-based Control Strategy of Battery Energy Storage System for Power System Frequency Regulation (전력계통 주파수조정을 위한 SOC 기반의 배터리 에너지저장장치 제어전략)

  • Yun, Jun Yeong;Yu, Garam;Kook, Kyung Soo;Rho, Do Hwan;Chang, Byung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.622-628
    • /
    • 2014
  • This paper presents the SOC-based control strategy of BESS(Battery Energy Storage System) for providing power system frequency regulation in the bulk power systems. As the life cycle of BESS would be shortened by frequent changes of charge and discharge required for frequency regulation in a steady state, the proposed algorithm operates BESS within a range of SOC where its life cycle can be maximized. However, during a transient period of which occurrence frequency is low, BESS would be controlled to use its full capacity in a wider range of SOC. In addition, each output of multiple BESS is proportionally determined by its SOC so that the balance in SOC of multiple BESS can be managed. The effectiveness of the proposed control strategy is verified through various case studies employing a test system. Moreover, the control result of BESS with the measured frequency from a real system shows SOC of BESS can be maintained within a specific range although the frequency deviation is biased.

The Study of Grid Fault Detection for Sag, Swell (Sag와 Swell에 따른 계통 이상 검출에 관한 연구)

  • Kim, Min-Gi;Noh, Yong-Su;Kim, Jun-Gu;Jung, Yong-Chae;Won, Chun-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.471-472
    • /
    • 2013
  • When ESS(Energy Storage System) is under normal operation, island situation can be occur because of grid accidents. When island operation occur, the system mode switches in to UPS(Uninterruptible Power Supply) mode to supply stabled load power. To decide island operation, checking grid magnitude or frequency is general. But regulation for sag and swell is required. In this paper, it proposes grid connection error detection algorithm for UPS operation when sag and swell occurs in grid, and analyzed by simulation.

  • PDF

Development of Operation and Control Technology of Energy Storage System for Frequency Regulation and Operation by Grid Connected Automatic Control (주파수조정용 에너지저장장치 운전제어 기술의 개발과 계통연계 자동제어 운전)

  • Lim, Geon-Pyo;Choi, Yo-Han;Im, Ji-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.235-241
    • /
    • 2016
  • Grid-connected, large-capacity energy storage systems (ESS) can be used for peak load supply, frequency regulation, and renewable energy output smoothing. In order to confirm the capability of battery ESS to provide such services, 4MW/ 8MWh battery ESS demonstration facility was built in the Jocheon substation on Jeju Island. The frequency regulation technology developed for the Jocheon demonstration facility then became the basis for the 28MW and 24MW frequency regulation ESS facilities installed in 2014 at the Seo-Anseong and Shin-Yongin substations, respectively. The operation control systems at these two facilities were continuously improved, and their successful commercialization led to the construction of additional ESS facilities all over Korea in 2015. In seven (7) locations nationwide (e.g., Shin-Gimje and Shin-Gyeryeong), a total of 184 MW of ESS had been commercialized in 2016. The trial run for the new ESS facilities had been completed between April and May in 2016. In this paper, results of the trial run from each of the ESS facilities are presented. The results obtained from the Seo-Anseong and Shin-Yongin substations during a transient event by a nuclear power plant trip are also presented in this paper. The results show that the frequency regulation battery ESS facilities were able to quickly respond to the transient event and trial run of ESS is necessary before it is commercialized.