• Title/Summary/Keyword: Grid Turbulence

Search Result 336, Processing Time 0.022 seconds

PREDICTION OF AIRFOIL CHARACTERISTICS WITH VARIOUS TURBULENCE MODELING (다양한 난류 모텔에 따른 익형 특성 예측)

  • Kim, C.W.;Lee, Y.G.;Lee, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.50-52
    • /
    • 2007
  • In the present paper, some difficulties encountered in predicting airfoil characteristics are described and solutions for those problems are discussed Since drag is determined by the amounts of pressure and, especially, shear stress, accurate estimation of shear stress is very crucial. However shear stress computation is dependent on the grid density and turbulence model, it should be consistent in preparing grid and turbulence model. When the transition from laminar to turbulent happen at the middle of airfoil, CFD solver should divide the region into laminar and turbulent region based on the transition location.

  • PDF

COMPARATIVE STUDY ON TURBULENCE MODELS FOR SUPERSONIC FLOW AT HIGH ANGLE OF ATTACK (초음속 고받음각 유동을 위한 난류 모델 비교 연구)

  • Park, M.Y.;Park, S.H.;Lee, J.W.;Byun, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.45-49
    • /
    • 2007
  • Asymmetric force and vibration caused by separation flow at high angle of attack affect the stability of supersonic missile. As a preliminary study we verified the effect of turbulence model through general 3-D slender body for the supersonic flow at high angle of attack. ${\kappa}-{\omega}$ Wilcox model, ${\kappa}-{\omega}$ Wilcox-Durbin+ model, ${\kappa}-{\omega}$ shear-stress transport model, and Spalart-Allmaras one equation model are used. Grid sensitivity test was performed with three different grid system. results show that all models are in good agreement with the experimental data.

  • PDF

Incompressible/Compressible Flow Analysis over High-Lift Airfoil Using Two-Equation Turbulence Models (2-방정식 난류모델을 이용한 고양력 익형 주위의 비압축성/압축성 유동장 해석)

  • Kim Chang-Seong;Kim Jong-Am;No O Hyeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.90-95
    • /
    • 1998
  • The two-dimensional incompressible and compressible Navier-Stokes codes are developed for the computation of the viscous turbulent flow over high-lift airfoils. Incompressible code using pseudo-compressibility and dual-time stepping method involves a conventional upwind differencing scheme for the convective terms and LU-SGS scheme for time integration. Compressible code also adopts an FDS scheme and LU-SGS scheme. Several two-equation turbulence models (the standard $k-{\varepsilon}$ model, the $k-{\omega}$ model. and $k-{\omega}$ SST model) are evaluated by computing the flow over single and multi-element airfoils. The compressible and incompressible codes are validated by computing the flow around the transonic RAE2822 airfoil and the NACA4412 airfoil, respectively. Both the results show a good agreement with experimental surface pressure coefficients and velocity profiles in the boundary layers. Also, the GA(W)-1 single airfoil and the NLR7301 airfoil with a flap are computed using the two-equation turbulence models. The grid systems around two- and three-element airfoil are efficiently generated using Chimera grid scheme, one of the overlapping grid generation methods.

  • PDF

Verification and Validation of the Numerical Simulation of Transverse Injection Jets using Grid Convergence Index (GCI 를 이용한 수직분사제트 수치모사의 검증 및 확인)

  • 원수희;정인석;최정열
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.53-62
    • /
    • 2006
  • Two-dimensional steady flowfields generated by transverse injection jets into a supersonic mainstream are numerically simulated. Fine-scale turbulence effects are represented by a k-${\omega}$ SST two-equation closure model which includes $y^+$ effects on the turbulence model. Solution convergence is evaluated by using Grid Convergence Index(GCI), a measure of uncertainty of the grid convergence. Comparison is made with experimental data and other turbulence models in term of surface static pressure distributions, the length of the upstream separation region, and the penetration height. Results indicate that the k-${\omega}$ SST model correctly predicts the mean surface pressure distribution and the upstream separation length for low static pressure ratios. However, the numerical predictions become less consistent with experimental results as the static pressure ratio increases. All these results are taken within 1% error band of grid convergence.

Effect of taper on fundamental aeroelastic behaviors of super-tall buildings

  • Kim, Yong Chul;Tamura, Yukio;Yoon, Sung-Won
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.527-548
    • /
    • 2015
  • Aeroelastic wind tunnel experiments were conducted for conventional and tapered super-tall building models to investigate the effect of taper on fundamental aeroelastic behaviors in various incident flows. Three incident flows were simulated: a turbulent boundary-layer flow representing urban area; a low-turbulent flow; and a grid-generated flow. Results were summarized focusing on the effect of taper and the effect of incident flows. The suppression of responses by introducing taper was profound in the low-turbulence flow and boundary-layer flow, but in the grid-generated flow, the response becomes larger than that of the square model when the wind is applied normal to the surface. The effects of taper and incident flows were clearly shown on the normalized responses, power spectra, stability diagrams and probability functions.

A Study on the Numerical Analysis of the Viscous Flow for a Full Ship Model (비대선 모형에 대한 점성유동의 수치해석연구)

  • 박명규;강국진
    • Journal of the Korean Institute of Navigation
    • /
    • v.19 no.2
    • /
    • pp.13-22
    • /
    • 1995
  • This paper presents the numerical analysis results of the viscous flow for a full ship model. The mass and momentum conservation equations are used for governing equations, and the flow field is discretized by the Finite-Volume Method for the numerical calculation. An algebraic grid and elliptic grid generation techniques are adopted for generation of the body-fitted coordinates system, which is suitable to ship's hull forms. Time-marching procedure is used to solve the three-dimensional unsteady problem, where the convection terms are approximated by the QUICK scheme and the 2nd-order central differencing scheme is used for other spatial derivatives. A Sub-Grid Scale turbulence model is used to approximate the turbulence, and the wall function is used at the body surface. Pressure and velocity fields are calculated by the simultaneous iteration method. Numerical calculations were accomplished for the Crude Oil Tanker(DWT 95,000tons, Cb=0.805) model. Calculation results are compared to the experimental results and show good agreements.

  • PDF

Experimental measurements on Single-Phase Local heat transfer coefficients in $6{\times}6$ rod bundles with LSVF mixing vanes (LSVF 혼합날개를 이용한 $6{\times}6$ 연료봉 다발에서의 단상 국부적 열전달계수의 실험적 측정)

  • Bae, Kyenug-Keun;Choi, Young-Don
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.300-305
    • /
    • 2005
  • The present experimental study investigates single-phase heat transfer coefficients downstream of support grid in $6{\times}6$ rod bundles. Support grid with split mixing vanes enhance heat transfer in rod bundles by generating it make turbulence. But this turbulence is confined to short distance. Support grid with LSVF mixing vanes enhanced heat transfer to longer distance. The corresponding Reynolds number investigated in the present study is Re=30,000. The heat transfer coefficients are measured using heated and unheated copper sensor.

  • PDF

Development of the Global-Korean Aviation Turbulence Guidance (Global-KTG) System Using the Global Data Assimilation and Prediction System (GDAPS) of the Korea Meteorological Administration (KMA) (기상청 전지구 수치예보모델을 이용한 전지구 한국형 항공난류 예측시스템(G-KTG) 개발)

  • Lee, Dan-Bi;Chun, Hye-Yeong
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.223-232
    • /
    • 2018
  • The Global-Korean aviation Turbulence Guidance (G-KTG) system is developed using the operational Global Data Assimilation and Prediction System of Korea Meteorological Administration with 17-km horizontal grid spacing. The G-KTG system provides an integrated solution of various clear-air turbulence (CAT) diagnostics and mountain-wave induced turbulence (MWT) diagnostics for low [below 10 kft (3.05 km)], middle [10 kft (3.05 km) - 20 kft (6.10 km)], and upper [20 kft (6.10 km) - 50 kft (15.24 km)] levels. Individual CAT and MWT diagnostics in the G-KTG are converted to a 1/3 power of energy dissipation rate (EDR). 12-h forecast of the G-KTG is evaluated using 6-month period (2016.06~2016.11) of in-situ EDR observation data. The forecast skill is calculated by area under curve (AUC) where the curve is drawn by pairs of probabilities of detection of "yes" for moderate-or-greater-level turbulence events and "no" for null-level turbulence events. The AUCs of G-KTG for the upper, middle, and lower levels are 0.79, 0.69, and 0.63, respectively. Comparison of the upper-level G-KTG with the regional-KTG in East Asia reveals that the forecast skill of the G-KTG (AUC = 0.77) is similar to that of the regional-KTG (AUC = 0.79) using the Regional Data Assimilation and Prediction System with 12-km horizontal grid spacing.

Computational Simulations of Turbulent Wake Behind a Pre-Swirl Duct Using a Hybrid Turbulence Model with High Fidelity (하이브리드 난류 모델을 이용한 전류고정덕트 후류의 고정도 수치 해석)

  • Kang, Min Jae;Jung, Jae Hwan;Cho, Seok Kyu;Hur, Jea-Wook;Kim, Sanghyeon;Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.141-148
    • /
    • 2022
  • A hybrid turbulence model has developed by combining a sub-grid scale model using dynamic k equation in LES with k-𝜔 SST model of RANS equation. To ascertain potential applicability of the hybrid turbulence model, fully developed turbulent channel flows at Re𝜏=180 have been simulated of which computational domain has a top wall with coarse cells and a bottom wall with fine cells. The streamwise mean velocity and turbulent intensity profiles showed a good agreement with DNS data when using the hybrid model rather than using a single model in k-𝜔 SST or dynamic k equation models. Computational simulations of turbulent flows around KVLCC2 with a pre-swirl duct have been mainly performed using the hybrid turbulence model. Compared to the results obtained from RANS simulation with k-𝜔 SST model as well as LES with dynamic k equation SGS model, turbulent wakes of the duct in the present simulation using the hybrid turbulence model were very similar to that of LES. Also, the resistances acting on hull, rudder and duct in hybrid turbulence model were similar to those in RANS simulation whereas the viscous forces acting on the hull in LES had a significant error due to coarse cells inappropriate to the sub-grid scale model.

A Study on the y+ Effects on Turbulence Model of Unstructured Grid for CFD Analysis of Wind Turbine (풍력터빈 전산유체역학해석에서 비균일 그리드 무차원 연직거리의 난류모델에 대한 영향특성)

  • Lee, Kyoung-Soo;Ziaul, Huque;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • This paper presents the dimensionless wall distance, y+ effect on SST turbulent model for wind turbine blade. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine was used for the study, which the wind tunnel and structural test data has publicly available. The near wall treatment and turbulent characteristics have important role for proper CFD simulation. Most of the CFD development in this area is focused on advanced turbulence model closures including second moment closure models, and so called Low-Reynolds (low-Re) number and two-layer turbulence models. However, in many cases CFD aerodynamic predictions based on these standard models still show a large degree of uncertainty, which can be attributed to the use of the $\epsilon$-equation as the turbulence scale equation and the associated limitations of the near wall treatment. The present paper demonstrates the y+ definition effect on SST (Shear Stress Transport) turbulent model with advanced automatic near wall treatment model and Gamma theta transitional model for transition from lamina to turbulent flow using commercial ANSYS-CFX. In all cases the SST model shows to be superior, as it gives more accurate predictions and is less sensitive to grid variations.