• Title/Summary/Keyword: Grid Connected Converter

Search Result 209, Processing Time 0.029 seconds

Development of a Unified Research Platform for Plug-In Hybrid Electrical Vehicle Integration Analysis Utilizing the Power Hardware-in-the-Loop Concept

  • Edrington, Chris S.;Vodyakho, Oleg;Hacker, Brian A.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • This paper addresses the establishment of a kVA-range plug-in hybrid electrical vehicle (PHEV) integration test platform and associated issues. Advancements in battery and power electronic technology, hybrid vehicles are becoming increasingly dependent on the electrical energy provided by the batteries. Minimal or no support by the internal combustion engine may result in the vehicle being occasionally unable to recharge the batteries during highly dynamic driving that occurs in urban areas. The inability to sustain its own energy source creates a situation where the vehicle must connect to the electrical grid in order to recharge its batteries. The effects of a large penetration of electric vehicles connected into the grid are still relatively unknown. This paper presents a novel methodology that will be utilized to study the effects of PHEV charging at the sub-transmission level. The proposed test platform utilizes the power hardware-in-the-loop (PHIL) concept in conjunction with high-fidelity PHEV energy system simulation models. The battery, in particular, is simulated utilizing a real-time digital simulator ($RTDS^{TM}$) which generates appropriate control commands to a power electronics-based voltage amplifier that interfaces via a LC-LC-type filter to a power grid. In addition, the PHEV impact is evaluated via another power electronic converter controlled through $dSPACE^{TM}$, a rapid control systems prototyping software.

AC Regeneratable Battery Charging and Discharging Test System (AC 회생이 가능한 배터리 충·방전 테스트 시스템)

  • Kim, Jun-Gu;Youn, Sun-Jae;Kim, Jae-Hyung;Won, Chung-Yuen;Na, Jong-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.99-106
    • /
    • 2012
  • In this paper, 15[kW] AC regenerative system for battery charging and discharging test is proposed. The regenerative system is able to regenerate surplus energy to the grid in discharging mode, and the inverter of the system can be operated as a converter to compensate scarce energy in charging mode. In case of the conventional DC charging and discharging system, the regenerative energy is consumed by a resistor. However, as the proposed system regenerates the surplus energy to the grid through using DC-AC inverter, the energy saving effect can be achieved. In this paper, 15[kW] battery charging and discharging system is developed, and the validity of the system is verified through simulation and experimental results.

DC Offset Current Compensation Method of Transformeless Fuel Cell/PV PCS (무변압기형 연료전지/태양광용 PCS의 직류분 보상기법)

  • Park, Bong-Hee;Kim, Seung-Min;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Chul;Lee, Dong-Ha;Lee, Young-Kwon
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.92-97
    • /
    • 2013
  • This paper proposes DC offset current compensation method of transformerless fuel cell/PV PCS. DC offset current is generated by the unbalanced internal resistance of the switching devices in full bridge topology. The other cause is the sensitivity of the current sensor, which is lower than DSP in resolution. If power converter system has these causes, the AC output current in the inverter will generate the DC offset. In case of transformerless grid-connected inverter system, DC offset current is fatal to grid-side, which results in saturating grid side transformer. Several simulation results show the difficulties of detecting DC offset current. Detecting DC offset current method consists of the differential amplifiers and PWM is compensated by the output of the Op amp circuit with integrator controller. PSIM simulation verifies that the proposed method is simpler and more effective than using low resolution current sensor alone.

Solar Inverter with Grid Power Generation

  • Suchitra Khoje;Govind Wanje;Ramesh Mali
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.162-165
    • /
    • 2023
  • Power can be generated from either renewable or non-renewable sources. Renewable sources are liked to maintain a strategic distance from contamination emanation and rely on upon fossil energizes which is decreasing day by day. The proposed sun powered vitality transformation unit comprises of a sun oriented exhibit, Bidirectional DC-DC converter, single stage inverter and AC. The inverter changes over DC control from the PV board into AC power and offered it to the heap which is associated with the lattice. The photovoltaic sun powered vitality (PV) is the most direct approach to change over sunlight based radiation into power and depends on the photovoltaic impact. The most extreme power point following of the PV yield for all daylight conditions is a key to keep the yield control per unit cost low for fruitful PV applications. Framework associated PV frameworks dependably have an association with people in general power matrix by means of an appropriate inverter in light of the fact that a PV module conveys just dc power. This project presents the new design, Development and Performance Analysis of a Grid Connected PV Inverter. Demonstrate that the proposed framework can lessen the Energy Consumption radically from the power board and give a solid support to the Grid.

Voltage Equalizing of Solar Modules for Shadowing Compensation

  • Jou, Hurng-Liahng;Wu, Kuen-Der;Wu, Jinn-Chang;Chung, Cheng-Huan;Huang, Ding-Feng
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.514-521
    • /
    • 2017
  • This paper proposes a shadowing compensation method for the solar modules of grid-connected photovoltaic generation systems. The shadowing compensator (SC) implemented by the proposed shadowing compensation method is used only for the solar modules that can be shaded by predictable sources of shading. The proposed SC can simplify both the power circuit and the control circuit as well as improve power efficiency and utilizes a voltage equalizer configured by a modified multi-winding fly-back converter. The proposed SC harvests energy from the entire solar cell array to compensate for the shaded sub-modules of the solar cell array, producing near-identical voltages of all shaded and un-shaded sub-modules in the solar cell array. This setup prevents the formation of multiple peaks in the P-V curve under shaded conditions. Hardware prototypes are developed for the SCs implemented by the conventional and modified multi-winding fly-back converters, and their performance is verified through testing. The experimental results show that both SCs can overcome the multiple peaks in the P-V curve. The proposed SC is superior to the SC implemented by the conventional multi-winding fly-back converter.

Parallel operation of grid-connected PV PCS (계통연계형 태양광 PCS의 병렬운전)

  • Lee K.O.;Jung Y.S.;So J.H.;Yu B.G.;Yu G.J.;Choi J.Y.;Choy I.
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.299-301
    • /
    • 2006
  • 계통연계형 태양광 시스템을 구성하고 있는 전력변환장치인 PCS(power conditioning system)는 일반적으로 그 내부에 입력전력 평활용 Capacitor, DC-DC Converter, DC link Capacitor, DC-AC Inverter 및 L-C Filter 등으로 구성된다. 이러한 태양광 시스템의 구성은 주로 태양광 어레이와 PCS의 DC-DC Converter 및 DC-AC Inverter의 수와 연결 방법에 따라 여러 가지로 구성할 수가 있다. 본 논문에서 제안할 시스템의 구성은 하나의 태양광 어레이를 다수의 계통연계형 태양광 PCS가 공유하는 형태인데, 이러한 시스템의 주요 장점은 첫째, 일사량에 따라 각각의 PCS가 모두 정격에서 운전하도록 하여 변환효율을 개선할 수 있다는 점과 둘째, 태양광 어레이의 용량 확장에 따른 PCS 장치의 용이한 확장성 그리고 셋째, 연결되어 있는 다수의 PCS 중 하나의 태양광 PCS가 고장으로 인하여 유지 및 보수가 필요할 때에도 그 외의 다른 정상적인 태양광 PCS는 지속적인 발전이 가능한 장점 등을 갖는다. 본 논문에서는 태양광 어레이의 출력을 공유하는 병렬운전용 태양광 PCS의 구성에 대하여 연구하고, 그 병렬운전기법을 제시하여 이에 대한 타당성을 시뮬레이션으로 검증하고자 한다.

  • PDF

Parallel operation of grid-connected PV PCS (계통연계형 태양광 PCS의 병렬운전기법)

  • Lee, K.O.;Jung, Y.S.;So, J.H.;Yu, B.G.;Yu, G.J.;Choi, J.Y.;Song, S.H.;Chi, I.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.230-231
    • /
    • 2007
  • 계통연계형 태양광 시스템을 구성하고 있는 전력변환장치인 PCS(power conditioning system)는 일반적으로 그 내부에 입력전력 평활용 Capacitor, DC-DC Converter, DC link Capacitor, DC-AC Inverter 및 L-C Filter 등으로 구성된다. 이러한 태양광 시스템의 구성은 주로 태양광 어레이와 PCS의 DC-DC Converter 및 DC-AC Inverter의 수와 연결 방법에 따라 여러 가지로 구성할 수가 있다. 본 논문에서 제안할 시스템의 구성은 하나의 태양광 어레이를 다수의 계통 연계형 태양광 PCS가 공유하는 형태인데, 이러한 시스템의 주요 장점은 첫째, 일사량에 따라 각각의 PCS가 모두 정격에서 운전하도록 하여 변환효율을 개선할 수 있다는 점과 둘째, 태양광 어레이의 용량 확장에 따른 PCS 장치의 용이한 확장성 그리고 셋째, 연결되어 있는 다수의 PCS 중 하나의 태양광 PCS가 고장으로 인하여 유지 및 보수가 필요할 때에도 그 외의 다른 정상적인 태양광 PCS는 지속적인 발전이 가능한 장점 등을 갖는다. 본 논문에서는 태양광 어레이의 출력을 공유하는 병렬운전용 태양광 PCS의 구성에 대하여 연구하고, 그 병렬운전기법을 제시하여 이에 대한 타당성을 시뮬레이션으로 검증하고자 한다.

  • PDF

Research on the Re-Use of Electric Vehicle Battery for Energy Storage Systems (전기자동차 배터리의 에너지 저장장치로의 재사용에 관한 연구)

  • Vuand, Hai-Nam;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.345-346
    • /
    • 2016
  • The grid-connected energy storage systems, which could increase the reliability, efficiency, and cleanliness of the grid is presently restricted by the high cost of batteries. This problems could be solved by batteries retired from automotive services. These batteries can provide a low-cost system for energy storage and other applications such as residential applications and renewable energy integration. This paper gives an overview of technical requirements for the re-use of the electric vehicle batteries in energy storage systems.Firstly, the motivation of research is introduced. Secondly, the technologies needed for the re-use of the battery are introduced such asidentification of the battery characteristics, grading of the aged batteries, identification of the state-of-charge and state-of-health of the battery and suitable power electronic converter topologies. In addition the control strategy to maximize the battery lifespan and bypass the faulty batteries is presented and one-stop solution to implement the above mentioned technologies are also given.

  • PDF

Comparative study of proportional-integral, proportional-resonant, and predictive deadbeat controllers in a PV PCS (태양광 전력변환장치의 PI, PR 및 PD 제어기 비교 연구)

  • Le, Dinh-Vuong;Kim, Chang-Soon;Hwang, Chul-Sang;Park, Minwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1050-1051
    • /
    • 2015
  • In industry, there are several different controllers which can be implemented for power conditioning systems (PCS) such as proportional-resonant (PR), predictive deadbeat (PD), or proportional-integral (PI) controller. But there are not any comparison studies about these controllers. To investigate the differences between the three types of the controllers, this paper presents a comparative study of PR, PI, and PD controllers in a photovoltaic (PV) PCS. These controllers are designed mathematically and simulated for the comparative analysis. The PI controller is designed in the rotating reference (dq) frame. The PR and PD controllers are implemented in the natural (abc) reference frame. The PCS is composed of a DC-DC boost converter and a full bridge inverter. The filter of the PCS is an LCL filter including a passive damping resistor. The parameters of PCS are 3 kW, 25 kHz switching frequency and 220 V-60 Hz grid voltage. The comparison results between these controllers for the grid-connected PCS are clearly shown. The simulation results demonstrate the detailed characteristics of each controller for the PV PCS in order to choose the controller for individual target properly.

  • PDF

Comparative Study between Two-loop and Single-loop Control of DC/DC Converter for PVPCS (PVPCS DC/DC 컨버터 모델링 및 2중 루프 제어와 단일 루프 제어의 특성 비교)

  • Kim, Dong-Hwan;Jung, Seung-Hwan;Song, Seung-Ho;Choi, Ju-Yeop;Choi, Ick;An, Jin-Ung;Lee, Sang-Chul;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.245-254
    • /
    • 2012
  • In photovoltaic system, the characteristics of photovoltaic module such as open circuit voltage and short circuit current will be changed because of cell temperature and solar radiation. Therefore, the boost converter of a PV system connects between the output of photovoltaic system and DC link capacitor of grid connected inverter as controlling duty ratio for maximum power point tracking(MPPT). This paper shows the dynamic characteristics of the boost converter by comparing single-loop and two-loop control algorithm using both analog and digital control. Both proposed compensation methods have been verified with computer simulation to demonstrate the validity of the proposed control schemes.