• Title/Summary/Keyword: Greenhouse soil

Search Result 886, Processing Time 0.022 seconds

Changes in Methane Emissions from Paddy under Different Tillage and Cultivation Methods (벼 재배 시 경운 및 재배방법에 의한 메탄발생 양상)

  • Kim, Sukjin;Cho, Hyun-Suk;Choi, Jong-Seo;Park, Ki Do;Jang, Jeong-Sook;Kang, Shin-gu;Park, Jeong-Hwa;Kim, Min-Tae;Kang, In-Jeong;Yang, Woonho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.4
    • /
    • pp.251-256
    • /
    • 2016
  • The increase in carbon stock and sustainability of crop production are the main challenges in agricultural fields relevant to climate change. Methane is the most important greenhouse gas emitted from paddy fields. This study was conducted to investigate the effects of tillage and cultivation methods on methane emissions in rice production in 2014 and 2015. Different combinations of tillage and cultivation were implemented, including conventional tillage-transplanting (T-T), tillage-wet hill seeding (T-W), minimum tillage-dry seeding (MT-D), and no-tillage-dry seeding (NT-D). The amount of methane emitted was the highest in T-T treatment. In MT-D and NT-D treatments, methane emissions were significantly decreased by 77%, compared with that in T-T treatment. Conversely, the soil total carbon (STC) content was higher in MT-D and NT-D plots than in tillage plots. In both years, methane emissions were highly correlated with the dry weight of rice ($R^2=0.62{\sim}0.96$), although the cumulative emissions during the rice growing period was higher in 2014 than in 2015. T-T treatment showed the highest $R^2$ (0.93) among the four treatments. Rice grain yields did not significantly differ with the tillage and cultivation methods used. These results suggest that NT-D practice in rice production could reduce the methane emissions and increase the STC content without loss in grain yield.

Synthesis and pesticidal activity of ricinine derivatives (Ricinine 유도체(誘導體)의 합성(合成) 및 농약활성(農藥活性))

  • Kwon, Oh-Kyung;Lim, Soo-Kil;Hong, Su-Myeong;Lee, Sung-Eun;Kyung, Suk-Hun
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.1
    • /
    • pp.24-31
    • /
    • 1998
  • Chemical derivative synthesis of ricinine, an active compound of Ricinus communis which showed high mortality against brown planthopper (Nilaparvata lugens), was performed to improve its pesticidal activity and the toxicity of 12 synthetic derivatives against major insect pests and phytopathogenic fungi were examined. Carbamate derivatives of ricinine could be synthesized from the precursor of ricinine, chloronorricinine and norricinine, whereas the derivatives were not synthesized from chlororicinic acid and ricinic acid having ketone group of pyridine ring. In organophosphates, reaction with oxon type of phosphate gave better yield than thiono type. Among the organophosphate derivatives of ricinine, thiono type of derivative structure gave $96.3%{\sim}100%$ mortality of the brown planthopper and the two-spotted spider mite (Tetranychus urticae) at 500 ${\mu}g/ml$ level. On the other hand, carbamate derivatives did not show insecticidal activity. In the fungicidal activity of ricinine derivatives, the derivative having amino radical at the 2 position of ricinine gave 85 to 100% of mycelium growth inhibition effect against ten major plant pathogens at the 200 ${\mu}g/ml$ level. In particular, the control value of the derivative on the rice blast (Pyricularia grisea) and barley powdery mildew (Erysiphe graminis) at the 250 ${\mu}g/ml$ level in vivo under greenhouse conditions was 92% and 96%, respectively.

  • PDF

Plant Regeneration and Mutagenesis from Organogenic Callus of Dianthus Distributed in Gangwon Province (강원지역 패랭이꽃속의 캘러스로부터 식물체 재분화와 돌연변이체 유발)

  • Chang, Mi-Young;Hong, Sung-Won;Kim, Joon-Chul
    • Journal of Plant Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.73-80
    • /
    • 2003
  • Useful Dianthus species were collected and selected from two native and seven foreign species distributed in Gangwon province. For in vitro breeding,. callus was induced from the explants of apical meristem, leaf, stem and the in vitro adventitious shoots on MS basal medium with 2.0 mg/L 2,4-D and 0.5 mg/L BA at 27$^{\circ}C$ under continuous light. After 3 weeks of culture, calli initiated the most highly from the leaf explants of D. chinensis Organogenic calli were able to be selected from the adventitious shoot-derived calli. For shoot regeneration, these organogenic calli were cultured on MS medium with the combination of 0.1 mg/L NAA+1.0 mg/L BA under continuous light. Multiple shoots were proliferated with low frequency (about 30%) from those adventitious shootderived calli. Also, shoots initiated directly from the adventitious shoot explants without callus formation at high frequency of 52% when cultured on N6 medium containing 0.1 mg/L NAA and 1.0 mg/L BA in D. gratianopol. Multiple shoots and plantlets grew well and rooted on MS medium supplemented with 0.1 mg/L NAA. Regenerants with well-developed roots were transferred to 8-cm pots containing vermiculite at 85% relative humidity and 27$^{\circ}C$ These plantlets were acclimatized in artificial soil mixture and transferred to the greenhouse for flowering with normal phenotypes. M28 Mutant line was selected with white flowers from 0.03M EMS-treated organogenic calli derived from in vitro adventitious shoot explants of D. chinensis and set seeds.

Plant Regeneration via Adventitious Shoot Formation in Platycodon grandiflorum (Jacq. A. DC.) (도라지 (Platycodon grandiflorum (Jacq.) A. DC.) 부정아 형성을 통한 식물체 재분화)

  • Kim, Ju Young;Na, Hyun Sun;Choi, Pil Son
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.330-334
    • /
    • 2017
  • To investigate optimal conditions for plant regeneration in Platycodon grandiflorum (Jacq. A. DC.).Both leaf and hypocotyl explants were cultured on Murashige& Skoog's (MS) medium supplemented with combinations of 0.1, 0.5, 1.0, or 2.0 mg/L cytokinins (BA and kinetin) and 1.0 mg/L 2,4-D for 6 weeks, respectively. According to the type of explant, the total shoot organogenesis (56.38%) in leaf explants was higher than in hypocotyls (28.20%). In comparison with kinetin and BA for the plant regeneration, the frequency (70.38%) of leaf explants was higher in combination with kinetin and 2,4-D than of BA with 2,4-D (42.38%), whereas the frequency (35.56%) of hypocotyls explants was higher in BA combination than kinetin combination (20.83%). Thehighest frequency (94.20%) was observed from the cultures of leaf explants on the MS medium supplemented with 1.0 mg/L kinetin and 1.0 mg/L 2,4-D. Upon transfer onto 1/2 MS basal medium containing 3% sucrose, shoots developed into plantlets with roots, and were well grown in soil in the greenhouse. These results lead us to speculate that the optimization of culture conditions was responsible for the mass propagation from in vitro cultures of Platycodon grandiflorum (Jacq. A. DC.).

Biological Control of Phytophthora Blight and Anthracnose Disease in Red-pepper Using Bacillus subtilis S54 (Bacillus subtilis S54 균주를 이용한 고추 역병과 탄저병의 생물학적 방제)

  • Lee, Gun-Woong;Kim, Myung-Jun;Park, Jun-Sik;Chae, Jong-Chan;Soh, Byoung-Yul;Ju, Jae-Eun;Lee, Kui-Jae
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.86-89
    • /
    • 2011
  • Phytophthora blight and anthracnose disease caused by Phytophthora capsici and Collectotrichum gloeosporioides are the most important devastating diseases of red pepper plants, worldwide. Five different bacterial isolates were isolated from the red pepper rhizosphere and non-rhizosphere soil and subsequently tested for antagonistic activity against P. capsisi and C. gloeosporioides. The area of the inhibition zone was taken as a measure for antagonistic activity. Among the 5 isolates tested, S54 exhibited a maximum antagonistic activity under in vitro and in vivo conditions. In greenhouse studies the isolate has successfully reduced the disease symptom. Protect value was 80.8% (Phytophthora blight) and 81.9% (Anthrancnose disease), whereas the infection rate of control plants was 21.3% and 23.2%. Based on the 16S rDNA sequence and API 50CHB Kit analysis the most effective isolate was identified as Bacillus subtilis. The results of the study indicate that the stratin S54 could be used as an potential biological control of Phytophthora blight and anthracnose disease of red pepper.

On the Change of Hydrologic Conditions due to Global Warming : 2. An Analysis of Hydrologic Changes in Daehung Dam Basin using Water Balance Model (지구온난화에 따른 수문환경의 변화와 관련하여 : 2. 물수지 모형을 이용한 대청댐 상류 유역 수문환경의 변화 분석)

  • An, Jae-Hyeon;Yun, Yong-Nam;Yu, Cheol-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.511-519
    • /
    • 2001
  • Global warming has begun since the industrial revolution and it is getting worse recently. Even though the increase of greenhouse gases such as $CO_2$is thought to be the main cause for glogal warming, its impact on global climate has not been revealed clearly in rather quantitative manners. The objective of this research is to predict the hydrological environment changes in the Daechung Dam basin due to the global warming. A mesoscale atmospheric/hydrologic model (IRSHAM96 model) is used to predict the possible changes in precipitation and temperature in the Daechun Dam basin. The simulation results of IRSHAM96 model and a conceptual water balance model are used to analyze the changes in soil moisture, evapotranspiration and runoff in the Daechung Dam basin. From the simulation results using the water balance model for 1x$CO_2$and 2x$CO_2$situations, it has been found that the runoff would be decreased in dry season, but increased in wet season due to the global warming. Therefore, it is predicted that the frequency of drought and flood occurrences in the Daechung Dam basin would be increased in 2x$CO_2$condition.

  • PDF

Biological Control of Plant Pathogens by Bacillus sp. AB02. (Bacillus sp. AB02를 이용한 식물 병원균에 대한 생물검정)

  • Kim, Keun-Ki;Kim, Yong-Chul;Choi, Young-Whan;Sin, Taek-Sun;Park, Ki-Do;Kang, Ui-Gum;Choi, Yong-Lark;Park, Hyean-Cheal
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.858-864
    • /
    • 2008
  • In the greenhouse fields for fruits and vegetables during the winter in Korea, there are serious damages by the sclerotium diseases due to the low temperature and humidity. This study was carried out to select an antagonic agent for the biological control of the sclerotium diseases. The 55 antagonic agents were selected from the rhizosphere in soil where the fruits and vegetables were cultivated in the green house fields, and strain AB02 among the tested isolates was estimated to be the strongest antagonist against the sclerotium disease. Using strain AB02, the antifungal spectrum was tested against 5 different plant pathogens. According to the results of the test, strain AB02 . showed the high antagonistic effect against Botrytis cinerea and Sclerotinia sclerotiorum. For the experiment of biological control against the sclerotium disease, it was estimated the suppression effect and the control effect by the strain in the pot experiment using the green perilla. According to the result of the pot experiments, the suppression effect was 40% and the control effect was 62%, respectively. For the stimulation effect of the tested plant growth by strain AB02 compared to the control, it was improved as 120% for the total length, 141% for the liveweight, 121% for the total number of leaves, 185% for the leaf area, and 327% for the liveweight of the root, respectively. Strain AB02 showing the antagonistic effect against the sclerotium disease and the stimulation effect for the plant growth was identified as Bacillus sp.

Suppression of Nitrate Accumulation in Vegetables by Foliar Application of Micronutrients (미량원소 엽면 처리에 의한 엽채류의 질산태 질소 축적 억제)

  • Eom, Jin-Sup;Park, Nu-Ri;Park, Sang-Gyu;Park, Shin;Chung, Jong-Bae
    • Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.240-245
    • /
    • 2001
  • Suppression of nitrate accumulation in vegetables through foliar application of micronutrients was investigated. Spinach and lettuce were grown in pots under greenhouse condition. Micronutrient solutions containing Cu, Mn, Mo, and Zn were used; chitosan was added into one and the other contained chitosan oligomers. The micronutrient solutions were sprayed on the leaves at 3 and 4 weeks after transplanting of 20-day-old seedlings. Plants were harvested at 5-weeks after transplanting. Yield, contents of chlorophyll, Brix value, micronutrient, and nitrate, and nitrate reductase activity were measured. Fresh weights of lettuce and spinach were significantly increased by the foliar application of micronutrients. Contents of chlorophyll and micronutrients were higher in micronutrient-treated plants, while those of nitrate were reduced by about 10 and 14-23% in lettuce and spinach, respectively. Compared to the control plants, nitrate reductase activity was higher in plants treated with micronutrients. Results of this study indicate the effect of micronutrients on the suppression of nitrate accumulation was relatively small in comparison to the contents of nitrate in leaves of spinach and lettuce. To maximize the effect, nutrient composition in solution, application time, and frequency should be further examined, taking into consideration nitrogen level in soil and other environmental factors including light condition.

  • PDF

Effect of KOH Concentrations and Pyrolysis Temperatures for Enhancing NH4-N Adsorption Capacity of Rice Hull Activated Biochar (KOH 농도 및 탄화온도가 왕겨 활성 바이오차의 NH4-N 흡착능 향상에 미치는 영향)

  • Kim, HuiSeon;Yun, Seok-In;An, NanHee;Shin, JoungDu
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.171-177
    • /
    • 2020
  • BACKGROUND: Recently, biomass conversion from agricultural wastes to carbon-rich materials such as biochar has been recognized as a promising option to maintain or increase soil productivity, reduce nutrient losses, and mitigate greenhouse gas emissions from the agro-ecosystem. This experiment was conducted to select an optimum conditions for enhancing the NH4-N adsorption capacity of rice hull activated biochar. METHODS AND RESULTS: For deciding the proper molarity of KOH for enhancing its porosity, biochars treated with different molarity of KOH (0, 1, 2, 4, 6, 8) were carbonized at 600℃ in the reactor. The maximum adsorption capacity was 1.464 mg g-1, and an optimum molarity was selected to be 6 M KOH. For the effect of adsorption capacity to different carbonized temperatures, 6 M KOH-treated biochar was carbonized at 600℃ and 800℃ under the pyrolysis system. The result has shown that the maximum adsorption capacity was 1.76 mg g-1 in the rice hull activated biochar treated with 6 M KOH at 600℃ of pyrolysis temperature, while its non-treated biochar was 1.17 mg g-1. The adsorption rate in the rice hull activated biochar treated with 6 M KOH at 600℃ was increased at 62.18% compared to that of the control. Adsorption of NH4-N in the rice hull activated biochar was well suited for the Langmuir model because it was observed that dimensionless constant (RL) was 0.97 and 0.66 at 600℃ and 800℃ of pyrolysis temperatures, respectively. The maximum adsorption amount (qm) and the bond strength constants (b) were 0.092 mg g-1 and 0.001 mg L-1, respectively, for the rice hull activated biochar treated with 6 M KOH at 600℃ of pyrolysis. CONCLUSION: Optimum condition of rice hull activated biochar was 6M KOH at 600℃ of pyrolysis temperature.

Influence of Crown Gall Infection on Growth and Flowering of Rose (뿌리혹병 감염이 장미의 생육과 개화에 미치는 영향)

  • Han, Kyung-Sook;Kim, Won-Hee;Park, Jong-Han;Han, You-Kyoung;Cheong, Seung-Rong
    • Research in Plant Disease
    • /
    • v.14 no.3
    • /
    • pp.159-164
    • /
    • 2008
  • Crown gall of rose (Rosa hybrida) was observed in greenhouse during 2003-2007. The average disease incidence was up to 38.1 % and was more severe in hydroponic culture as compared to soil culture. The typical gall symptom occurred mainly on the root, crown, or both, and resulted on poor rooting, growth retardation and yield loss. The reduction rate of rooting influenced by crown gall was 57.5% as compared to healthy plants on nursery stock. The location of gall formation in the plant influenced growth vigor resulting in symptoms such as poor shooting. Healthy plants produced 19.1 flowers/$m^2$, while diseased plants produced 9.5 flowers/$m^2$ during the same cultivation period. Moreover, the number of days to flowering was longer for the diseased plants than for healthy plants - 51.2 days and 39.8 days for first harvest, and 60.6 days and 52.1 days for the second harvest, respectively. Conclusively, infection on the basal stem caused serious loss of the number of shoot formation; yield loss of cut flower was 38.7% due to crown gall infection and delay of harvesting time about 8-10 days.