• Title/Summary/Keyword: Greenhouse monitoring system

Search Result 120, Processing Time 0.041 seconds

Cost Analysis of Electrokinetic Process for Desalination of Saline Agricultural Land (염류집적 농경지 탈염을 위한 전기역학적 처리공정의 비용산출)

  • Kim, Do-Hyung;Choi, Jeong-Hee;Jo, Sung-Ung;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.4
    • /
    • pp.91-97
    • /
    • 2012
  • In this study, cost analysis of electrokinetic (EK) restoration process for desalination of saline agricultural land was performed for field application based on a pilot scale field application. For reasonable cost analysis, EK process was classified into three major parts: system design, installation and operation. Cost of system installation consists of materials and installation for electrode/electric wire, power supply and data monitoring, drainage system, etc. Operation cost was calculated based on electrical consumption and water charges for EK process. Total cost for EK process was 2,943,013 won for $1000m^2$ in greenhouse area. Cost for system installation was 2,553,786 won, that is, 87% of total cost, while cost for system operation was 389,229 won, that is, 13% of total cost.

Study on the Development of Devices for Smart HACCP Systems with WCDMA-LTE Based (WCDMA-LTE 기반의 Smart HACCP 시스템 구축을 위한 단말기 개발에 관한 연구)

  • Jang, Moon-Kee;Park, Jin-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.490-493
    • /
    • 2014
  • To protect the students from food poisoning, in this paper, it is proposed that the Smart HACCP system which based with WCDMA-LTE to monitoring the temperature and humidity of a freezer, a heating cabinet and kitchen instruments at the elementary, junior and high school. After gathering the data, It is compared with a standard food poisoning index to provide more safe food reserves from the server. Then the server send a index to the terminal which is installed in a kitchen at any school to show the current environment. It is need an WCDMA-LTE terminal to realize smart HACCP system that is proposed from this paper. So, the proposed WCDMA-LTE terminal is designed with using a LTE modem included a 424 MHz wireless modem and a bluetooth 4.0 modem to communicate with other terminals. It can be use the monitoring system of a plastic greenhouse or remotely environment control system.

Synchronization and identification of ship shaft power and speed for energy efficiency design index verification

  • Lee, Donchool;Barro, Ronald Dela Cruz;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.123-132
    • /
    • 2014
  • The maritime sector is advancing with dedicated endeavor to reduce greenhouse gas in addressing issues with regards to global warming. Since 01 January 2013, the International Maritime Organization (IMO) regulation mandatory requirement for Energy Efficiency Design Index (EEDI) has been in place and should be satisfied by newly-built ships of more than 400 gross tonnage and the Ship Energy Efficiency Management Plan (SEEMP) for all ships type. Therefore, compliance to this necessitates planning during the design stage whereas verification can be carried-out through an acceptable method during sea trial. The MEPC-approved 2013 guidance, ISO 15016 and ISO 19019 on EEDI serves the purpose for calculation and verification of attained EEDI value. Individual ships EEDI value should be lower than the required value set by these regulations. The key factors for EEDI verification are power and speed assessment and their synchronization. The shaft power can be measured by telemeter system using strain gage during sea trial. However, calibration of shaft power onboard condition is complicated. Hence, it relies only on proficient technology that operates within the permitted ISO allowance. On the other hand, the ship speed can be measured and calibrated by differential ground positioning system (DGPS). An actual test on a newly-built vessel was carried out to assess the correlation of power and speed. The Energy-efficiency Design Index or Operational Indicator Monitoring System (EDiMS) software developed by the Dynamics Laboratory-Mokpo Maritime University (DL-MMU) and Green Marine Equipment RIS Center (GMERC) of Mokpo Maritime University was utilized for this investigation. In addition, the software can continuously monitor air emission and is a useful tool for inventory and ship energy management plan. This paper introduces the synchronization and identification method between shaft power and ship speed for EEDI verification in accordance with the ISO guidance.

The Study of Optimized Combustion Tuning for Fossil Power Plant (발전보일러의 최적연소조정에 대한 실험적 연구)

  • Jung, Jae-Jin;Song, Jung-Il
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.102-108
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for NOx controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2$, NOx and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective back-pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing NOx emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

  • PDF

The Study of Optimized Combustion Tuning Method for Fossil Power Plant (발전용 보일러의 최적연소조정기법에 대한 실험적 연구)

  • Jung, Jae-Jin;Song, Jung-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.45-52
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for $NO_x$ controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2,\;NO_x$ and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective rear pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing $NO_x$ emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

Research on Greenhouse External Finedust Management and Monitoring System Using Raspberry Pi (라즈베리파이를 활용한 비닐하우스 외부 미세먼지 관리 및 모니터링 시스템 연구)

  • Young-suk Choi;Eun-ser Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.136-137
    • /
    • 2023
  • 비닐하우스 외부 미세먼지로 인해 일사량이 감소하여 작물 품질 및 생산량의 감소가 지속적으로 발생하고 있으며 이를 예방하기 위한 외부 미세먼지 관리가 가능한 시스템이 요구된다. 본 연구는 라즈베리파이를 활용하여 미세먼지 관리 및 모니터링 시스템을 연구하고, 이를 농업 및 환경 연구 분야에 활용함으로써 미세먼지 관리에 새로운 가능성을 제시한다. 이는 관리자가 애플리케이션을 통해 비닐하우스 외부를 효율적으로 관리하여 품질 및 생산성 향상에 기여한다.

u-IT Based Plant Growth Environment Management System (u-IT 기반의 생장환경 관리 시스템)

  • Cho, Seung-Il;Kim, Jong-Chan;Ban, Kyeong-Jin;Kim, Chee-Yong;Kim, Eung-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.362-364
    • /
    • 2011
  • To build ubiquitous agriculture environment successfully, development of core technology for agriculture, such as sensor node H/W, sensor node middleware platform, routing protocol and agricultural environment application service is essential. With the application of u-IT technologies to traditional agriculture area, fusion complex technologies become a source to raise value-added agriculture product and its productivity. However, it is imperative to expand horticulture industry area and improve infrastructure for utility-based horticulture. This paper proposes an agriculture product growth environment management system that utilizes environmental factor monitoring sensors and biological information sensors in greenhouse to specifically manage botany growth environment management.

  • PDF

Fault Tree Analysis for Risk Assessment of CO2 Leakage from Geologic Storage (지중 저장 이산화탄소의 누출 위험도 평가를 위한 결함수 분석)

  • Lee, Sang Il;Lee, Sang Ki;Hwang, Jin Hwan
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.359-366
    • /
    • 2009
  • CCS (Carbon Capture and Storage) is considered as the most promising interim solution to deal with the greenhouse gas such as $CO_2$ responsible for global warming. Even though carefully chosen geologic formations are known to contain stored gas for a long time period, there are potential risks of leakage. Up to now, applicable risk assessment procedures for the leakage of $CO_2$ are not available. This study presents a basis for risk analysis applicable to a complex geologic storage system. It starts with the classification of potential leakage pathways. Receptors and the leakage effect on them are identified and quantified. Then, a fault tree is constructed, which yields the minimum cut set (i.e., the most vulnerable leakage pathway) and quantifies the probability of the leakage risk through the cut set. The methodology will provide a tool for risk assessment in a CCS project. The outcomes of the assessment will not only ensure the safety of the CCS system but also offer a reliable and efficient monitoring plan.

Estimation of Emission and Development of Emission Factor on Greenhouse Gas (CO2) of the Combustion Facilities (연소시설의 온실가스(CO2) 배출량 산정 및 배출계수개발)

  • Kim, Hong-Rok;Jin, Byong-Bok;Yoon, Wan-Woo;Kwon, Young-Sung;Lee, Min-Young;Yoon, Young-Bong;Shin, Won-Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.4
    • /
    • pp.277-283
    • /
    • 2007
  • Since the Kyoto Protocol became into effect, Korea has been expected to be part of the Annex I countries performing the duty of GHG reduction in the phase of post-Kyoto. Therefore, it is necessary to develop emission factors appropriate to Korean circumstances. In order to develop emission factors this study utilized the CleanSYS, which is the real-time monitoring system for industrial smoke stacks to calculate the emission rate of $CO_2$ continuously. In this study, the main focus was on the power generation plants emitting the largest amount of $CO_2$ among the sectors of fossil fuel combustion. Also, an examination on the comparison of $CO_2$ emission was made among 3 generation plants using the different types of fuels such as bituminous coal and LNG; one for coal and others for LNG. The $CO_2$ concentration of the coal fired plant showed Ave. 13.85 %(10,384 ton/day). The LNG fired plants showed 3.16 %(1,031 ton/day) and 3.19 %(1,209 ton/day), respectably. Consequently, by calculating the emission factors using the above results, it was found that the bituminous coal fired power plant had the $CO_2$ emission factor average of 88,726 kg/TJ, and the LNG fired power plants had the $CO_2$ average emission factors of 56,971 kg/TJ and 55,012 kg/TJ respectably which were similar to the IPCC emission factor.

Measurement Uncertainty of Nitrous Oxide Concentrations from a Upland Soil Measured by an Automated Open Closed Chamber Method (밭토양에서 폐쇄형 자동 챔버법으로 측정한 아산화질소 농도에 대한 측정 불확도)

  • Ju, Ok Jung;Kang, Namgoo;Lim, Gap June
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.237-245
    • /
    • 2020
  • BACKGROUND: The closed chamber method is the most commonly used for measuring greenhouse gas emissions from upland fields. This method has the advantages of being simple, easily available and economical. However, uncertainty estimation is essential for accurate assessment of greenhouse gas emissions and verification of emission reductions. The nitrous oxide emissions from upland field is very important for the nitrogen budget in the agriculture sectors. Although assessment of uncertainty components affecting nitrous oxide emission from upland field is necessary to take account of dispersion characteristics, research on these uncertainty components is very rare to date. This study aims at elucidation of influencing factors on measurement uncertainty of nitrous oxide concentrations measured by an automated open closed chamber method from upland field. METHODS AND RESULTS: The nitrous oxide sampling system is located in the upland field in Gyeonggi-do Agricultural Research and Extension Services (37°13'22"N, 127°02'22"E). The primary measurement uncertainty components influencing nitrous oxide concentrations (influencing factors) investigated in this research are repeatability, reproducibility and calibration in the aspects of nitrous oxide sampling and analytical instrumentation. The magnitudes of the relative standard uncertainty of each influencing factor are quantified and compared. CONCLUSION: Results of this study show what influencing factors are more important in determination of nitrous oxide concentrations measured using the automated open closed chambers located in the monitoring site. Quantifying the measurement uncertainty of the nitrous oxide concentrations in this study would contribute to improving measurement quality of nitrous oxide fluxes.