• Title/Summary/Keyword: Green microstructure

Search Result 135, Processing Time 0.022 seconds

Effect of Organic Additives on Microstructure and Green Density of Zirconia Granules Using Water Solvent (유기첨가제가 수계에서 제조된 지르코니아 과립의 미세구조 및 성형밀도에 미치는 영향)

  • Jung, Ji-Hwan;Lee, Sang-Jin
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.147-152
    • /
    • 2017
  • Spherical-type zirconia granules are successfully fabricated by a spray-drying process using a water solvent slurry, and the change in the green density of the granule powder compacts is examined according to the organic polymers used. Two organic binders, polyvinyl alcohol (PVA) and 2-hydroxyethyl methacrylate (HEMA), which are dissolved in a water solvent and have different degrees of polymerization, are applied to the slurry with a plasticizer (polyethylene glycol). The granules employing a binder with a higher degree of polymerization (PVA) are not broken under a uniaxial press; consequently, they exhibit a poor green density of $2.4g/cm^3$. In contrast, the granule powder compacts employing a binder with a lower degree of polymerization (HEMA) show a higher density of $2.6g/cm^3$ with an increase in plasticizer content. The packing behavior of the granule powders for each organic polymer system is studied by examining the microstructure of the fracture surface at different applied pressures.

Microstructure and Mechanical Property of Ti-Mn-Cu Alloys with Magnetic Pulsed Compaction (자기펄스성형이 적용된 Ti-Mn-Cu 합금의 미세구조 및 기계적 특성)

  • Yun, Ye Jun;Park, Chun Woong;Choi, Won June;Byun, Jongmin
    • Journal of Powder Materials
    • /
    • v.28 no.1
    • /
    • pp.20-24
    • /
    • 2021
  • Ti-based alloys are widely used in biomaterials owing to their excellent biocompatibility. In this study, Ti-Mn-Cu alloys are prepared by high-energy ball milling, magnetic pulsed compaction, and pressureless sintering. The microstructure and microhardness of the Ti-Mn-Cu alloys with variation of the Cu addition and compaction pressure are analyzed. The correlation between the composition, compaction pressure, and density is investigated by measuring the green density and sintered density for samples with different compositions, subjected to various compaction pressures. For all compositions, it is confirmed that the green density increases proportionally as the compaction pressure increases, but the sintered density decreases owing to gas formation from the pyrolysis of TiH2 powders and reduction of oxides on the surface of the starting powders during the sintering process. In addition, an increase in the amount of Cu addition changes the volume fractions of the α-Ti and β-Ti phases, and the microstructure of the alloys with different compositions also changes. It is demonstrated that these changes in the phase volume fraction and microstructure are closely related to the mechanical properties of the Ti-Mn-Cu alloys.

Influence of Granules Characteristics and Compaction Pressure on the Microstructure and Mechanical Properties of Sintered Alumina

  • Cho, Yong-Ick;Chung, Sang-Gwi;Cho, Sung-Yong;Kim, Seung-Jai;Nobuhiro Shinohara;Masataro Okumiya
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.3
    • /
    • pp.212-217
    • /
    • 2001
  • The influence of granules characteristics and compaction pressure on the microstructure and mechanical properties of sintered as a function of slurry dispersion state. The characteristics and the compaction behavior of the spray dried alumina granules considerably affected the microstructure as well as the mechanical properties of the sintered body. In the green bodies formed with granules prepared with a dispersed slurry, the granules with dimple clearly existed and caused pore defects in sintered body. These dimples were clearly present even in the green body prepared at 180 MPa. The pores between the granules were not removed during pressing and sintering, and remained in the sintered body. In contrast, in the granules fabricated from a flocculated slurry, the destroy of granules at the contact points was observed with increasing pressure. Sintered bodies fabricated with fewer defects showed strength increase. For the sample fabricated with flocculated slurry, the pores at the boundaries of granules were small and more irregular shape compared with those of dispersed slurry.

  • PDF

The Repeat Heat Treatment Behavior of Double Remelted Fe-Co Ultra-high Strength Steel. - Part. 1 Microstructure Control (Fe-Co기 고인성 고강도강의 반복 열처리 거동 - Part 1. 조직제어)

  • Yoon, Bo-Hee;Park, Kyoung-Tae;Lee, Tae-Hyuk;Kim, Jae-Hoon;Kim, Hong-Kyu;Lee, Seong;Lee, Jong-Hyeon
    • Journal of Korea Foundry Society
    • /
    • v.32 no.1
    • /
    • pp.32-37
    • /
    • 2012
  • In this study, microstructural evaluation was carried out on secondary hardening type ultrahigh strength steel, Fe-Co-Ni composition. This paper as a first part of whole research presented the microstructural behavior by cyclic heat treatment. The cyclic heat treatment method includes normalizing, stress relieving, solution treatment and aging. Especially, solution treatments performed triple times to get maximized solution hardening. Phase transformation and microstructure were observed by using optical microscope (OM), Electron back-scattered diffraction (EBSD) and X-ray stress analyzer. During the triple solution treatment, size of grain boundary was dramatically decreased by generating a packet from the martensite transformation of residual austenite in the inner part of grain, whereas the hardness increase was not significant.

A Feasibility Study on the Surface Hardening of Sintered Iron Nanopowder by Plasma Ion Nitriding (플라즈마 이온질화에 의한 Fe 나노분말소결체의 표면경화 가능성 연구)

  • Yun, Joon-Chul;Lee, Jai-Sung
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.13-18
    • /
    • 2012
  • This study has been performed on the full density sintering of Fe nanopowder and the surface hardening by plasma ion nitriding. The Fe sintered part was fabricated by pressureless sintering of the Fe nanopowder at $700^{\circ}C$ in which the nanopowder agglomerates were controlled to have 0.5-5 ${\mu}m$ sized agglomerates with 150 nm Fe nanopowders. The green compact with 46% theoretical density(T.D.) showed a homogeneous microstructure with fine pores below 1 ${\mu}m$. After sintering, the powder compact underwent full densification process with above 98%T.D. and uniform nanoscale microstructure. This enhanced sintering is thought to be basically due to the homogeneous microstructure in the green compact in which the large pores are removed by wet-milling. Plasma ion nitriding of the sintered part resulted in the formation of ${\gamma}$'-$Fe_4N$ equilibrium phase with about 12 ${\mu}m$ thickness, leading to the surface hardening of the sintered Fe part. The surface hardness was remarkably increased from 176 $H_v$ for the matrix to 365 $H_v$.

Microstructure, Electric, and Magnetic Properties of Mg-Ferrite with Various Calcination Temperature (하소온도에 따른 Mg-페라이트 소결체의 미세구조 및 전기.자기적 특성 연구)

  • 김성재;정명득;백종규
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • Effects of calcination temperature on microstructure and electric-magnetic properties of Mg-ferrite were investigated. As the calcination temperature increase, the green density and the sintered density increase due to the enhancement of densification of calcined powder. The grain size in the sintered ferrite increases with increasing the calcination temperatures from 800 to 100$0^{\circ}C$, but decreases from 1000 to 120$0^{\circ}C$. The resistivity decreases with increasing the calcination temperatures from 800 to 110$0^{\circ}C$, but increases from 1100 to 120$0^{\circ}C$ due to the microstructure which consists of small, uniform grian size and pores at grain boundaries. Magnetization increases slightly due to the increasement of the sintered density while Curie temperature is almost constant regardless of calcination temperatures.

  • PDF

Particle Agglomerate Effect on Intermediate/Final Microstructure (입자 응집이 중기/말기 미구조에 미치는 영향)

  • 손영돈;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.843-850
    • /
    • 1992
  • The purpose of this study was to describe the heterogeneity effects on Intermediate/Final microstructure in isothermal liquid phase sintering. Several kinds of pore shapes were made by the different in the heterogeneity stress level during Intermediate/Final stage. Specimen with 48% green density especially showed that the local regions of a sintered compact were subject to more rapid shrinkage than the surroundings. This densification limiting factors generally inhibited sintering and made the large isolated crack-like pore in heterogeneous microstructures.

  • PDF

Vacuum Casting of Mn-Zn Ferrite Powders Prepared by Alcoholic Dehydration Method (알콜탈수법에 의해 제조된 Mn-Zn Ferrite 미분체의 진공주입성형)

  • 이경직;이대희;김창현;이창섭;이석기;이병교
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.11
    • /
    • pp.1107-1112
    • /
    • 1997
  • Mn-Zn ferrite powders prepared by an alcoholic dehydration method. Vacuum casting, a kind of wet forming process was examined with this powders. As binders, polyethylene glycol and polyvinyl alcohol were used. In order to estimate this conditions, fracture morphology, densities of green and sintered bodies and the microstructure were observed. High density and homogeneous microstructure in sintered bodies were obtained in the case of 0.1 wt% PEG or 0.5 wt% PVA.

  • PDF

Microstructure Evolution and Dielectric Characteristics of CaCu3Ti4O12 Ceramics with Sn-Substitution

  • Kim, Cheong-Han;Oh, Kyung-Sik;Paek, Yeong-Kyeun
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.87-91
    • /
    • 2013
  • The doping effect of Sn on the microstructure evolution and dielectric properties was studied in $CaCu_3Ti_{4-x}Sn_xO_{12}$ polycrystals. Samples were produced by a conventional solid-state reaction method. Sintering was carried out at $1115^{\circ}C$ for 2-16 h in air. The dielectric constant and loss were examined at room temperature over a frequency range between $10^2$ and $10^6$ Hz. The microstructure was found to evolve into three stages. Addition of $SnO_2$ led to an increase in density and advanced formation of abnormal grains. The formation of coarse grains with a reduced thickness of the boundary brought about an enhanced dielectric constant and a lower dielectric loss below ~1 kHz. EDS data showed the Cu-rich phase along the grain boundary, which should contribute to the improved dielectric constant according to the internal barrier layer capacitor model. After all, $SnO_2$ was an effective dopant to elevate the dielectric characteristics of $CaCu_3Ti_{4-x}Sn_xO_{12}$ polycrystals as a promoter for abnormal grain growth.

The effects of Mg2Si(p) on microstructure and mechanical properties of AA332 composite

  • Zainon, Fizam;Ahmad, Khairel Rafezi;Daud, Ruslizam
    • Advances in materials Research
    • /
    • v.5 no.1
    • /
    • pp.55-66
    • /
    • 2016
  • This paper describes a study on the effects of $Mg_2Si_{(p)}$ addition on the microstructure, porosity, and mechanical properties namely hardness and tensile properties of AA332 composite. Each composite respectively contains 5, 10, 15, and 20 wt% reinforcement particles developed by a stir-casting. The molten composite was stirred at 600 rpm and melted at $900^{\circ}C{\pm}5^{\circ}C$. The $Mg_2Si$ particles were wrapped in an aluminum foil to keep them from burning when melting. The findings revealed that the microstructure of $Mg_2Si_{(p)}/AA332$ consists of ${\alpha}$-Al, binary eutectic ($Al+Mg_2Si$), $Mg_2Si$ particles, and intermetallic compound. The intermetallic compound was identified as Fe-rich and Cu-rich, formed as polygonal or blocky, Chinese script, needle-like, and polyhendrons or "skeleton like". The porosity of $Mg_2Si_{(p)}/AA332$ composite increased from 8-10% and the density decreased from 9-12% from as-cast. Mechanical properties such as hardness increased for over 42% from as-cast and the highest UTS, elongation, and maximum Q.I were achieved in the sample of 10% $Mg_2Si$. The study concludes that combined with AA332, the amount of 10 wt% of$Mg_2Si$ is a suitable reinforcement quantity with the combination ofAA332.