DOI QR코드

DOI QR Code

A Feasibility Study on the Surface Hardening of Sintered Iron Nanopowder by Plasma Ion Nitriding

플라즈마 이온질화에 의한 Fe 나노분말소결체의 표면경화 가능성 연구

  • Yun, Joon-Chul (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Lee, Jai-Sung (Department of Metallurgy and Materials Science, Hanyang University)
  • 윤준철 (한양대학교 금속재료공학과) ;
  • 이재성 (한양대학교 금속재료공학과)
  • Received : 2011.11.29
  • Accepted : 2012.01.20
  • Published : 2012.02.28

Abstract

This study has been performed on the full density sintering of Fe nanopowder and the surface hardening by plasma ion nitriding. The Fe sintered part was fabricated by pressureless sintering of the Fe nanopowder at $700^{\circ}C$ in which the nanopowder agglomerates were controlled to have 0.5-5 ${\mu}m$ sized agglomerates with 150 nm Fe nanopowders. The green compact with 46% theoretical density(T.D.) showed a homogeneous microstructure with fine pores below 1 ${\mu}m$. After sintering, the powder compact underwent full densification process with above 98%T.D. and uniform nanoscale microstructure. This enhanced sintering is thought to be basically due to the homogeneous microstructure in the green compact in which the large pores are removed by wet-milling. Plasma ion nitriding of the sintered part resulted in the formation of ${\gamma}$'-$Fe_4N$ equilibrium phase with about 12 ${\mu}m$ thickness, leading to the surface hardening of the sintered Fe part. The surface hardness was remarkably increased from 176 $H_v$ for the matrix to 365 $H_v$.

Keywords

References

  1. Metals Handbook. 9th ed., American Society for Metals., 7 (1984) 67-153.
  2. J. Y. Son, S. B. Kim, Y. M. Kim and Y. W. Park: J. Kor. Inst. Met. & Mater., 40(5) (2002) 499.
  3. S. H. Choa, S. K. Kim and J. S. Park: Journal of KSTLE, 12(4) (1996) 60.
  4. M. B. Karais and A. M. Staines: Heat Treatment of Metals, (1989) 79-82.
  5. W. K. You, S. S. Jung and J. S. Lee: J. Kor. Powd. Met. Inst., 15(4) (2008) 271 (Korean). https://doi.org/10.4150/KPMI.2008.15.4.271
  6. J. S. Lee, H. G. Kang and Y. S. Kang: Advances in Powder Metallurgy & Particulate Materials-2008, (2008) 5-15.
  7. B. D. Cullity and S. R. Stock: Elements of X-Ray Diffraction, Prentice-Hall, Inc., (2001) 170.
  8. W. P. Tong, J. Sun, L. Zuo, J. C. He and J. Lu: Wear, 271 (2011) 653. https://doi.org/10.1016/j.wear.2010.11.024
  9. B. D. Cullity: Element for metal powder and powder metallurgy, Metal Powder Industries Federation, NJ., (1992) 42.
  10. J. S. Lee, B. H. Cha and Y. S. Kang: Adv. Eng. Mater., 7(6) (2005) 467. https://doi.org/10.1002/adem.200400194
  11. R. M. German: Sintering Theory and Practice, John Wiley & Sons, Inc., (1996) 120.
  12. W. F. Gale and T. C. Totemeier: Smithells Metals Reference Book, Elsevier Inc, (2004) 11-286.
  13. C. Z. Chen, X. H. Shi, P. C. Zhang, B. Bai, Y. X. Leng and N. Huang: Solid State Ionics, 179 (2008) 971. https://doi.org/10.1016/j.ssi.2008.03.019
  14. E. J. Miola, S. D. de Souza and M. Olzon-Dionysio: Surface and Coatings Technology, 167 (2003) 33. https://doi.org/10.1016/S0257-8972(02)00884-8
  15. E. J. Niola, S. D. de Souza, P. A. P. Nascente, M. Olzon- Dionysio, C.A. Olivieri and D. Spinelli: J. Vac. Sci. Technol. A., 18(6) (2000) 2733. https://doi.org/10.1116/1.1314392
  16. M. Sahara, T. Sato, S. Ito and K. Akashi: Materials Chemistry and Physics, 54 (1998) 123. https://doi.org/10.1016/S0254-0584(98)00063-7