• Title/Summary/Keyword: Green Tape

Search Result 80, Processing Time 0.026 seconds

광식각 기술을 이용한 미세라인의 형성 및 Series Resonator의 구현

  • 박성대;조현민;이영신;이우성;박종철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.07a
    • /
    • pp.151-156
    • /
    • 2001
  • Using the photoimageable thick film conductors, $25\mu\textrm{m}$ line widths and $25\mu\textrm{m}$ spaces can be obtained. Test patterns are made by green tape lamination, paste printing, exposing to UV light, developing in an aqueous process and cofiring. Postfiring method using alumina substrate can be also applied to fine line formation. Series gap resonator formed by photopatterning process showed the improved signal transmission characteristics compared to that obtained by conventional screen printing.

  • PDF

Effect of Organic Processing Parameters in Non-aqueous Tape-casting on Dispersion Stability of Barium Titanate-Borosilicate Glass Based Suspensions (비수계 테잎성형공정의 유기공정변수의 변화에 따른 티탄산바륨-붕규산염유리계 현탁액의 분산안정성)

  • Yeo, Jeong-Gu;Choi, Sung-Churl
    • Korean Journal of Materials Research
    • /
    • v.13 no.11
    • /
    • pp.725-731
    • /
    • 2003
  • The effect of organic processing parameters on the dispersion stability of the BaTiO$_3$-based dielectric particles and borosilicate glass particulate suspensions was investigated in a system where organic solvents, dispersant, binder and modifier were used as processing additives in a low temperature cofired ceramic fabrication processes. Two- and three-component organic solvents were used to disperse ceramic particles and it was found the better stability in the particulate suspension prepared in a bi-solvent, which was consists of toluene and ethanol in a non-azeotropic composition. The addition amount of organic additives had a great impact on dispersion in the present investigation. The flow curves of the suspensions prepared with binder and modifier were fitted according to the power-law equation, which indicates that the internal structure of the suspension could be disturbed under the applied shear stress. Finally, the LTCC green tapes were successfully tape-cast based upon the optimum formulation of LTCC suspension and its microstructure was compared with that of the hard-agglomerates.

Study on the Composition of Organic Additives for Thickness Control of Ceramic Green Sheets (세라믹 그린 쉬트의 두께제어를 위한 유기물 첨가제 조성에 관한 연구)

  • Kim, Jun-Young;Yoo, Myong-Jae;Park, Jong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.184-184
    • /
    • 2008
  • 저온 동시 소성 세라믹(LTCC, Low Temperature Co-firing) 기술 중에서 테이프 캐스팅(tape casting)은 얇고 균일한 세라믹 그린 쉬트를 연속 성형할 수 있으며 성형된 쉬트의 밀도, 표면상태, 두께제어 등이 매우 중요하다. 얇고 균일한 세라믹 그린 쉬트를 제작하기 위해서 슬러리의 분산성과 레오로지 특성은 매우 중요한 요소이며 첨가되는 유기물 첨가제들의 종류와 함량비는 슬러리의 분산성과 점도에 큰 영향을 미친다. 본 연구에서는 유기물 첨가제의 종류와 함량에 따른 슬러리의 점도와 그린 쉬트의 밀도 및 두께 제어에 미치는 영향을 고찰하였다. 바인더로는 acryl, polyvinyl 계를 사용하였으며, 가소제는 glycol, phatalate 계를 사용하였다. 각각 2 종류의 바인더와 가소제의 함량에 따른 레올로지 거동과 그런 쉬트의 밀도를 측정하였다. 각 조성별로 준비된 슬러리를 사용하여 테이프 캐스팅 방법으로 제작된 그린 쉬트의 두께를 측정하여 유기물 첨가제 조성이 그린 쉬트의 두께제어에 미치는 영향을 평가하였다.

  • PDF

Influence of Alumina Slurry Composition on Mechanical Properties of Green Tapes (알루미나 슬러리 조성에 따른 그린 테이프의 기계적 특성)

  • Lee, Myung-Hyun;Park, Il-Seok;Kim, Dae-Joon;Lee, Deuk-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.871-877
    • /
    • 2002
  • Alumina slurriers, having various amount of alumina and ratio of organic additives, were prepared for tape casting. The relative viscosities were compared to investigate influence of composition on stability of the slurry and plotted as a function of powder fraction. They raised with increasing powder fraction of slurries, revealing a exponential function curve, which means that stability of slurry was not affected by amount and composition of organic additives. Cast green tapes were tested under tensile condition at room temperature. The increase in alumina ratio and binder ratio was found to decrease strain to failure of green tapes from 363% to 45% and from 68% to 25%, respectively. Tensile strength of green tapes increased abruptly with increasing alumina ratio, which showed its maximum at 1 MPa. On other hand, Tensile strength increased continuously from 0.5 MPa to 4 MPa with increasing binder ratio. Mechanical properties of them were affected seriously and lost their properties by elevating temperature from 20$^{\circ}C$ to 80$^{\circ}C$.

Bond Strength of TiO2 Coatings onto FTO Glass for a Dye-sensitized Solar Cell

  • Lee, Deuk Yong;Kim, Jin-Tae;Kim, Young-Hun;Lee, In-Kyu;Lee, Myung-Hyun;Kim, Bae-Yeon
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.395-401
    • /
    • 2012
  • The bond strength of three types of $TiO_2$ coatings onto fluorine-doped $SnO_2$ (FTO) glass was investigated with the aid of a tape test according to ASTM D 3359-95. Transmittance was then measured using an UV-vis spectrophotometer in the wavelength range of 300 nm to 800 nm to evaluate the extent of adhesion of $TiO_2$ nanorods/nanoparticles on FTO glass. A sharp interface between the coating layer and the substrate was observed for single $TiO_2$ coating ($TiO_2$ nanorods/FTO glass), which may be detrimental to the bonding strength. In multicoating sample ($TiO_2$ nanorod/$TiO_2$ nanoparticle/$TiO_2$ nanoparticle/FTO glass), the tape test was not performed due to severe peeling-off prior to the test. On the other hand, the dual coating sample ($TiO_2$ nanorod/$TiO_2$ nanoparticle/FTO glass) showed minimum variation of transmittance (4%) after the test, suggesting that the topcoat adheres well with the FTO substrate due to the presence of the $TiO_2$ nanoparticle buffer layer. The use of a $TiO_2$ nanorod electrode layer with good adhesion may be attributed to the excellent dye sensitized solar cell performance.

Fabrication of Solid State Electrolyte Li7La3Zr2O12 thick Film by Tape Casting (테잎캐스팅을 이용한 전고체전해질 Li7La3Zr2O12 후막 제조)

  • Shin, Ran-Hee;Son, Samick;Ryu, Sung-Soo;Kim, Hyung-Tae;Han, Yoon-Soo
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.379-383
    • /
    • 2016
  • A thick film of $Li_7La_3Zr_2O_{12}$ (LLZO) solid-state electrolyte is fabricated using the tape casting process and is compared to a bulk specimen in terms of the density, microstructure, and ion conductivity. The final thickness of LLZO film after sintering is $240{\mu}m$ which is stacked up with four sheets of LLZO green films including polymeric binders. The relative density of the LLZO film is 83%, which is almost the same as that of the bulk specimen. The ion conductivity of a LLZO thick film is $2.81{\times}10^{-4}S/cm$, which is also similar to that of the bulk specimen, $2.54{\times}10^{-4}S/cm$. However, the microstructure shows a large difference in the grain size between the thick film and the bulk specimen. Although the grain boundary area is different between the thick film and the bulk specimen, the fact that both the ion conductivities are very similar means that no secondary phase exists at the grain boundary, which is thought to originate from nonstoichiometry or contamination.

LTCC Tape Characterization as Organic formulation (유기물 조성에 따른 LTCC 테입 특성 연구)

  • Lim, W.;Kang, B.H.;Yoo, Y.S.;Lee, Y.S.;Cho, H.M.;Lee, W.S.;Kang, N.K.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.11a
    • /
    • pp.89-92
    • /
    • 2000
  • Non-aqueous tape casting of LTCC with PVB binder has been studied in a continuous tape casting machine. The aim of the study was to evaluate this type of system in the different Binder/Plasticizer and solid content compositions. Each four slurry compositions were used in the experiments with varied binder/plasticizer and solid content. All the slurries gave good quality tapes with smooth surfaces without blisters or pinholes. The highest mechanical properties was obtained for the B/P=3.0, powder content 70vol% composition from 52 ${\mu}{\textrm}{m}$ green tapes, a tensile strength of 4.6 MPa and a linear extension of 29.5%

  • PDF

Control of Explosion Behavior in Micro Hole Using UV Laser on LTCC Green Sheets Containing Carbon Particles (카본을 첨가한 LTCC 그린 시트에서 UV 레이저를 이용한 미세 홀 터짐 현상 제어)

  • Kim, Shi Yeon;Ahn, Ik-Joon;Yeo, Dong-Hun;Shin, Hyo-Soon;Yoon, Ho Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.786-790
    • /
    • 2016
  • Hole explosion behaviors were observed during drilling fine holes with laser beam on the LTCC green bar of $320{\mu}m$ thick after lamination of green sheets prepared by tape casting of thick film process. The incidence of these hole explosions was inversely proportional to hole sizes. The incidence of hole explosion was 20 % number of hole with the size of $60{\mu}m$ exploded for the UV radiation, while the explosion did not appear for hole sizes over $100{\mu}m$. To prevent hole explosion behavior during laser-drilling of fine holes, carbon black powder was added as an additive in the LTCC composition, which has superior thermal durability. As a consequence, hole explosion rate was suppressed to 0.8 % for the hole size of $50{\mu}m$ green sheet with the carbon black amount of 10 weight % and the laser power of 3 watt. Added carbon is thought to reduce the heat-affected region during laser drilling.

Microstructure and Thermal Insulation Properties of Ultra-Thin Thermal Insulating Substrate Containing 2-D Porous Layer (2차원 기공층을 포함하는 초박형 단열기판의 미세구조 및 단열 특성)

  • Yoo, Chang Min;Lee, Chang Hyun;Shin, Hyo Soon;Yeo, Dong Hun;Kim, Sung Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.683-687
    • /
    • 2017
  • We investigated the structure of an ultra-thin insulating board with low thermal conductivity along z-axis, which was based on the idea of void layers created during the glass infiltration process for the zero-shrinkage low-temperature co-fired ceramic (LTCC) technology. An alumina and four glass powders were chosen and prepared as green sheets by the tape casting method. After comparison of the four glass powders, bismuth glass was selected for the experiment. Since there is no notable reactivity between alumina and bismuth glass, alumina was selected as the supporting additive in glass layers. With 2.5 vol% of alumina powder, glass green sheets were prepared and stacked alternately with alumina green sheet to form the 'alumina/glass (including alumina additive)/alumina' structure. The stacked green sheets were sintered into an insulating substrate. Scanning electron microscopy revealed that the additive alumina formed supporting bridges in void layers. The depth and number of the stacking layers were varied to examine the insulating property. The lowest thermal conductivity obtained was 0.23 W/mK with a $500-{\mu}m-thick$ substrate.

Adhesion Performance of Electromagnetic Induction Heating Pixture for the Integration with a Waterproof & Root Barrier Sheet and a Roof Green Unit System (방수·방근시트와 옥상녹화 박스유닛 시스템의 일체화를 위한 전자기 유도가열 융착 고정구의 부착성능)

  • Oh, Chang-Won
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.463-469
    • /
    • 2018
  • A currently used roof green system with multi layers has a low constructability. Therefore a new integrated waterproof & root barrier sheet and roof green box unit system was developed using steel plate fixture and cone type fixture by electromagnetic induction heating method. This study was proceeded to evaluate adhesion performance of two types of fixtures on Engineering PE, TPO, PVC sheet in a normal condition, repeated heating and cooling condition. As a result, adhesion load on Engineering PE sheet showed the highest value. The adhesion loads of steel plate fixture showed higher value as heating temperature was getting higher. However adhesion loads of cone type fixture showed opposite tendency. Regarding to the test conditions, test results of normal condition, repeated heating and cooling condition showed same value. The cone type fixture using butyl tape showed 7 times lower adhesion load than that of cone type fixture using electromagnetic heating and 28% lower adhesion load in a repeated heating and cooling condition than a usual condition.