• Title/Summary/Keyword: Green Materials

Search Result 2,306, Processing Time 0.026 seconds

Greenhouse Test Results for Two Years of Sheet shaped Root Barrier Materials Apply to Green Roof System for Sustainable Building Construction

  • Jang, Dae-Hee;Kim, Hyeon-Soo;Choi, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.634-644
    • /
    • 2011
  • Recently, As a part of urban forestation, the introductions of green roofs into public projects has been actively driven. Supported by this policy, the sizes of domestic green roof related markets have been rapidly expanding and many types of root barrier materials developed in Korea or abroad are being commercially distributed. In this study, root barrier tests were conducted over two years with nine types of sheet type waterproof materials that are the most commonly used as root barrier layers in green roof systems. The test conditions prepared considered the climates, natural features and vegetation in Korea and the results and related root barrier performance were verified. From the results of this study, the necessity to improve the joint part of root barrier sheets and forming methods has been identified and a measure to improve domestic root barrier testing methods was proposed.

Comparison of Mechanical and Interfacial Properties of Carbon Fiber Reinforced Recycled PET Composites with Thermoforming Temperature and Time (열 성형 온도 및 시간에 따른 탄소섬유 강화 재활용 PET 복합재료의 계면 및 기계적 물성 비교)

  • Baek, Yeong-Min;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.175-180
    • /
    • 2017
  • Currently, since carbon fiber reinforced plastics (CFRPs) are lightweight and have excellent physical properties, their demand has increased dramatically. Many works have studied the CFRPs based on recycled thermoplastics. In this study, the applicability of recycled composite was evaluated using recycled polyethylene terephthalate (PET). PET was collected from waste materials used in beverage bottles and processed to produce PET films. Optimal thermoforming temperature and time were analyzed by comparing the mechanical properties with forming temperature and time difference for producing PET films. CF mat and PET film were used to determine the suitable parameters for the optimum thermoforming of CF/PET composites. The mechanical properties of each thermoforming condition were verified by bending test. The degree of impregnation of the PET film into the CF mat was evaluated by cross-sectional photographs, whereas the interfacial properties were evaluated by interlaminar shear strength (ILSS). Ultimately, it was confirmed that the thermoforming condition for forming the CF/recycled PET composites yielding the optimal mechanical and interfacial properties was at $270^{\circ}C$ for 5 minutes.

The Effect of Interfacial Properties and RTM Process of Composites with Different Cross-linking Density by Molecular Weight of Hardener (경화제의 분자량에 의한 가교밀도 차이에 따른 복합재료의 계면 물성 및 RTM 성형성에 미치는 영향)

  • Park, Ha-Seung;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.169-174
    • /
    • 2017
  • Demand of glass fiber reinforced composites (GFRC) increased with developing aircraft and defense industries using resin transfer molding (RTM) process to produce complex product. In this research, wetting, interfacial, and mechanical properties were evaluated with different Cross-linking Density by Molecular Weight of Hardener. Epoxy resin as matrices was used bisphenol-A type and amine-type hardeners with different molecular weight. Specimens were manufactured via RTM and wetting property of resin and glass fiber (GF) mat was evaluated to viscosity of epoxy and injection time of epoxy matrix. Mechanical property of GFRC was determined via flexural strength whereas interfacial properties were determined by interlaminar shear strength (ILSS) and interfacial shear strength (IFSS). The difference in mechanical property depends upon the fiber weight fraction (wt %) of GFRC by RTM as well as the different Molecular Weight of Hardener.

Can Artificial Intelligence Boost Developing Electrocatalysts for Efficient Water Splitting to Produce Green Hydrogen?

  • Jaehyun Kim;Ho Won Jang
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.175-188
    • /
    • 2023
  • Water electrolysis holds great potential as a method for producing renewable hydrogen fuel at large-scale, and to replace the fossil fuels responsible for greenhouse gases emissions and global climate change. To reduce the cost of hydrogen and make it competitive against fossil fuels, the efficiency of green hydrogen production should be maximized. This requires superior electrocatalysts to reduce the reaction energy barriers. The development of catalytic materials has mostly relied on empirical, trial-and-error methods because of the complicated, multidimensional, and dynamic nature of catalysis, requiring significant time and effort to find optimized multicomponent catalysts under a variety of reaction conditions. The ultimate goal for all researchers in the materials science and engineering field is the rational and efficient design of materials with desired performance. Discovering and understanding new catalysts with desired properties is at the heart of materials science research. This process can benefit from machine learning (ML), given the complex nature of catalytic reactions and vast range of candidate materials. This review summarizes recent achievements in catalysts discovery for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The basic concepts of ML algorithms and practical guides for materials scientists are also demonstrated. The challenges and strategies of applying ML are discussed, which should be collaboratively addressed by materials scientists and ML communities. The ultimate integration of ML in catalyst development is expected to accelerate the design, discovery, optimization, and interpretation of superior electrocatalysts, to realize a carbon-free ecosystem based on green hydrogen.

A Standard Test Methods of Resistance to Root Penetration for Waterproofing and Rootproofing Membrane Using Green Roof System (인공지반녹화용 멤브레인 방수 및 방근재료의 방근성능 평가 방법 제안 연구)

  • Lee, Jung-Hoon;Seon, Yun-Suk;Kwak, Kyu Sung;Oh, Sang-Keu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.141-148
    • /
    • 2009
  • The purpose of this paper is to propose a standard test methods of resistance to root penetration for waterproofing and rootproofing membrane using green roof system. Green roof system is considered to be an important subject in construction industry for green growth project. At the same time, we have to consider the counterplan for protection the damage of waterproofing layer and concrete substrate from the penetration of plant root. But many kinds of materials for protection from root penetration are using in construction field. But the performance of those materials is not clear, and there is not test methods for the evaluation of performance. So in this paper, based on the research results of 4 institutes during four years and foreign cases, we made a standard test methods of resistance to root penetration for waterproofing and rootproofing membrane using green roof system. This test method deals with about environmental condition of laboratory, experimental facilities, kinds of plant, specimen of test, management methods, evaluation duration and documents, etc.

  • PDF

Evaluation of Interfacial and Mechanical Properties of GF/p-DCPD Composites with Different Sizing Agents (사이징제에 따른 유리섬유/폴리디사이클로펜타디엔 복합재료의 계면물성 및 기계적 물성 평가)

  • Kim, Jong-Hyun;Kwon, Dong-Jun;Shin, Pyeong-Su;Park, Ha-Seung;Baek, Yeong-Min;Park, Joung-Man
    • Composites Research
    • /
    • v.31 no.2
    • /
    • pp.57-62
    • /
    • 2018
  • Interfacial and mechanical properties of neat and two sizing agents coated glass fiber (GF)/polydicyclopentadiene (p-DCPD) composites were evaluated at room and low temperatures, $25^{\circ}C$ and $-20^{\circ}C$. Sizing agents of GFs were extracted using acetone and compared via FT-IR. Surface energy and work of adhesion between GFs and p-DCPD were calculated by dynamic contact angle measurement. Mechanical properties of different GFs were determined using single fiber tensile test and interfacial properties of single GF reinforced DCPD strip were determined using cyclic loading tensile test. Mechanical properties of GFs/p-DCPD composites at room and low temperatures were determined using tensile, compressive, and Izod impact tests. Interfacial and mechanical properties were different with sizing agents of GFs and the optimized condition of sizing agent was found.

Preparation of Hollow Silica by Spray Drying of Nano Silica Particles and Its Heat Transfer Property (나노 실리카의 분무건조를 이용한 중공구 입자 제조와 실리카중공구의 열전달 특성)

  • Youn, Chan Ki;Lim, Hyung Mi;Cha, Sujin;Kim, Dae Sung;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.531-538
    • /
    • 2012
  • Hollow silica spheres were prepared by spray drying of precursor solution of colloidal silica. The precursor solution is composed of 10-20 nm colloidal silica dispersed in a water or ethanol-water mixture solvent with additives of tris hydroxymethyl aminomethane. The effect of pH and concentrations of the precursor and additives on the formation of hollow sphere particles was studied. The spray drying process parameters of the precursor feeding rate, inlet temperature, and gas flow rate are controlled to produce the hollow spherical silica. The mixed solvent of ethanol and water was preferred because it improved the hollowness of the spheres better than plain water did. It was possible to obtain hollow silica from high concentration of 14.3 wt% silica precursor with pH 3. The thermal conductivity and total solar reflectivity of the hollow silica sample was measured and compared with those values of other commercial insulating fillers of glass beads and $TiO_2$ for applications of insulating paint, in which the glass beads are representative of the low thermal conductive fillers and the $TiO_2$ is representative of infrared reflective fillers. The thermal conductivity of hollow silica was comparable to that of the glass beads and the total solar reflectivity was higher than that of $TiO_2$.

Luminescent properties of magnesium thiogallate phosphor with green emission for LEDs

  • Kim, Kyung-Nam;Kim, Jae-Myung;Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Chang-Hae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1331-1333
    • /
    • 2005
  • A magnesium thiogallate phosphor doped with europium was prepared by solid-state method. This phosphor has green emission near 535 nm due to the allowed transition from $4f^65d$ at an excitation state $(T_{2g})$ to $4f^7 (^8S_{7/2}) at a ground state of $Eu^{2+}$ ion. This phosphor shows a wide excitation spectrum from ultra violet (300 nm) to bluish green (515 nm).

  • PDF

A Fundamental Study for The Possibility of Charcoal as Green Infrastructure Materials

  • Choi, Jaehyuck;Shin, Soo-Jeong;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.691-699
    • /
    • 2015
  • To evaluate the possibility of charcoal as Green Infrastructure (GI) materials, data such as moisture content, amount of adsorbed water, and amount of evaporation were collected. Some data from previous study were referenced to find out if correlations exist between results in this study and previous study. Only porosity was directly related to moisture content. Two mechanical charcoal had better abilities than traditional charcoal in all three categories. Mechanical black charcoal chips produced by National Forestry Cooperative Federation (NFCFC) adsorbed 333.3% of water in thirty minutes, 297.5% in five minutes, and evaporated around 75% water in four days. This ability is much higher than other five charcoal. Even though results of test showed various degrees and NFCFC was the best as GI materials, data of charcoal were also within acceptable range based on generally accepted characteristics of GI materials.

A study on the Exterior materials of Super High Rise Housing in New York City (뉴욕시 초고층주거 외장재 연구)

  • 신수현
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2002.11a
    • /
    • pp.97-102
    • /
    • 2002
  • The Purpose of this study was to investigate the exterior materials of super high-rise housing more than 30 stories which were built in New York City between 1924 and 2004. The result of examining 153 buildings was as follows; Exterior materials of super high-rise housing which were used bricks, of the salt-glazed bricks, terra-cotta and ceramic tiles, jumbo bricks and bricks were preferred among them. The colour of bricks was yellow, yellow ochre, clear brown, brown, dark brown, orange, vermilion and red. Exterior materials of super high-rise hotel and hotel apartment were bricks and ceramic tiles in the early days but stones, curtain wall and glass(green glass, green-tinted glass, brown-tinted glass, black glass) after 1980s. The main colour of buildings extended gray, green, blue-tinted brown-tinted and black.

  • PDF