• Title/Summary/Keyword: Green Hydrogen

Search Result 396, Processing Time 0.025 seconds

High-Current Trench Gate DMOSFET Incorporating Current Sensing FET for Motor Driver Applications

  • Kim, Sang-Gi;Won, Jong-Il;Koo, Jin-Gun;Yang, Yil-Suk;Park, Jong-Moon;Park, Hoon-Soo;Chai, Sang-Hoon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.302-305
    • /
    • 2016
  • In this paper, a low on-resistance and high current driving capability trench gate power metal-oxide-semiconductor field-effect transistor (MOSFET) incorporating a current sensing feature is proposed and evaluated. In order to realize higher cell density, higher current driving capability, cost-effective production, and higher reliability, self-aligned trench etching and hydrogen annealing techniques are developed. While maintaining low threshold voltage and simultaneously improving gate oxide integrity, the double-layer gate oxide technology was adapted. The trench gate power MOSFET was designed with a 0.6 μm trench width and 3.0 μm cell pitch. The evaluated on-resistance and breakdown voltage of the device were less than 24 mΩ and 105 V, respectively. The measured sensing ratio was approximately 70:1. Sensing ratio variations depending on the gate applied voltage of 4 V ~ 10 V were less than 5.6%.

Effect of Sublimable Vehicle Compositions in the Camphor-Naphthalene System on the Pore Structure of Porous Cu-Ni (Camphor-Naphthalene 동결제 조성이 Cu-Ni 다공체의 기공구조에 미치는 영향)

  • Kwon, Na-Yeon;Suk, Myung-Jin;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.362-366
    • /
    • 2015
  • The effect of sublimable vehicle composition in the camphor-naphthalene system on the pore structure of porous Cu-Ni alloy is investigated. The CuO-NiO mixed slurries with hypoeutectic, eutectic and hypereutectic compositions are frozen into a mold at $-25^{\circ}C$. Pores are generated by sublimation of the vehicles at room temperature. After hydrogen reduction at $300^{\circ}C$ and sintering at $850^{\circ}C$ for 1 h, the green body of CuO-NiO is completely converted to porous Cu-Ni alloy with various pore structures. The sintered samples show large pores which are aligned parallel to the sublimable vehicle growth direction. The pore size and porosity decrease with increase in powder content due to the degree of powder rearrangement in slurry. In the hypoeutectic composition slurry, small pores with dendritic morphology are observed in the sintered Cu-Ni, whereas the specimen of hypereutectic composition shows pore structure of plate shape. The change of pore structure is explained by growth behavior of primary camphor and naphthalene crystals during solidification of camphor-naphthalene alloys.

Effect of Solidification Condition of Sublimable Vehicles on the Pore Characteristics in Freeze Drying Process (동결건조 공정에서 동결제의 응고조건이 기공특성에 미치는 영향)

  • Suk, Myung-Jin;Kim, Ji Soon;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.366-370
    • /
    • 2014
  • The present study demonstrates the effect of solidification condition on the pore structure in freeze drying process using the slurries of CuO/sublimable vehicles. Camphene and Camphor-45 wt% naphthalene based slurries with 14 vol% CuO powder were frozen into a mold at $-25^{\circ}C$, followed by sublimation at room temperature. The green bodies were hydrogen-reduced and sintered at $500^{\circ}C$ for 1 h. The porous Cu specimen, frozen the CuO/camphene slurry into the heated mold of the upper part, showed large pores with unidirectional pore channels and small pores in their internal wall. Also, it was observed that the size of large pores was decreasing near the bottom part of specimen. The change of pore structure depending on the freezing condition was explained by the nucleation behavior of camphene crystals and rearrangement of solid powders during solidification. In case of porous Cu prepared from CuO/Camphor-naphthalene system, the pore structure exhibited plate shape as a replica of the original structure of crystallized vehicles with hypereutectic composition.

Services of Algae to the Environment

  • Rai, Lal-Chand;Har Darshan Kumar;Frieder Helmut Mohn;Carl Johannas Soeder
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.119-136
    • /
    • 2000
  • Being autotrophic, algae occupy a trategic place in the biosphere. They produce oxygen both directly and indirectly through the chloroplasts of all green plants. The chloroplasts are believed to have originated from archaic prokaryotic algae through endosymbiosis with primitive eukaryotic cells. Phytoplankton and other algae regulate the global environment not only by releasing oxygen but also by fixing carbon dioxide. They affect water quality, help in the treatment of sewage, and produce biomass. They can be used to produce hydrogen which is a clean fuel, and biodiesel, and fix $N_2$ for use as a biofertilizer. Some other services of algae to the environment include restoration of metal damaged ecosystems, reducing the atmospheric $CO_2$ load and citigating global warming, reclamation of saline-alkaline unfertile lands, and production of dimethyl sulphide (DMS) and oxides of nitrogen (NOx) involved in the regulation of UV radiation. ozone concentration, and global warming. Algae can be valuable in understanding and resolving certain environmental issues.

  • PDF

Preparation and Characterization of Triethylenetetraamine Complexes of Molybdenum(V) (몰리브덴(V)의 트리에틸렌테트라아민의 착물합성과 그 성질)

  • Chang-Su Kim;Sang-Oh Oh
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.155-159
    • /
    • 1982
  • The new molybdenum(Ⅴ)-triethylenetetraamine complexes such as Trien$H_4(MoOCl_5)_2,\;(MoOCl_3)_2$(trien), and$Mo_2O_4Cl_2$ (trien) have been prepared, and the chemical, magnetic and spectroscopic properties of the complexes have been investigated. Trien$H_4(MoOCl_5)_2has been isolated as green crystal and from this salt the nonelectrolytic and paramagnetic complexes,$(MoOCl_3)_2$ (trien) have been prepared by evolution of hydrogen chloride in anhydrous ethanol. Hydrolysis of triethylenetetraammonium oxopentachloromolybdate(V) yielded the nonelectrolytic and dismagnetic complex, $Mo_2O_4Cl_2$(trien) as brown solid.

  • PDF

Experimental approach for catalyst bed sizing of liquid propellant thruster (50 Newton 급 액체 추력기의 촉매베드 사이징)

  • An, Sung-Yong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.145-148
    • /
    • 2008
  • A 50 Newton monopropellant thruster being developed for attitude control in a variety of aerospace application systems is described in this paper. A scaled down thruster with platinum on aluminum oxide in the reaction chamber was tested to determine the catalyst capacity. A scaled up thruster, was designed and fabricated using data obtained on small scale device, was evaluated by decomposition efficiency based on temperature, efficiency of characteristic velocity, and measurement of thrust. The performance of a scaled up thruster was 42 Newton in thrust, 98 % in efficiency of characteristic velocity, and 123 sec in specific impulse at sea level.

  • PDF

Design of Solenoid Actuator for FCV Cylinder Valve Considering Structural Safety (구조 안전성을 고려한 수소 연료 전지차 용기 밸브의 솔레노이드 액추에이터 설계)

  • Lee, Hyo Ryeol;Ahn, Jung Hwan;Shin, Jin Oh;Kim, Hwa Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.157-163
    • /
    • 2016
  • Green vehicles include electric vehicles, natural gas vehicles, fuel cell vehicles (FCV), and vehicles running on fuel such as a biodiesel or an ethanol blend. An FCV is equipped with a cylinder valve installed in an ultra-high pressure vessel to control the hydrogen flow. For this purpose, an optimum design of the solenoid actuator is necessary to ensure reliability when driving an FCV. In this study, an electromagnetic field analysis for ensuring reliable operation of the solenoid actuator was conducted by using Maxwell V15. The electromagnetic field analysis was performed by magnetostatic technique, according to the distance between magnetic poles in order to predict the attraction force. Finally, the attraction force was validated through comparison between the Maxwell results and measurement results. From the results, the error of attraction force ranged from 4.53 % to 9.05 % at testing conditions.

Experimental approach for catalyst bed sizing of liquid propellant thruster (액체추력기 촉매베드 크기 결정을 위한 실험적 방법)

  • An, Sung-Yong;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.24-33
    • /
    • 2008
  • A 50 Newton monopropellant thruster being developed for attitude control in a variety of aerospace application systems is described in this paper. A scaled down thruster with platinum on aluminum oxide in the reaction chamber was tested to determine the catalyst capacity. A scaled up thruster which was designed and fabricated using data obtained from a small scale device was evaluated by its decomposition efficiency based on the temperature, the efficiency of characteristic velocity, and the measurement of thrust. The performance of a scaled up thruster was marked by a measured thrust of 42 Newton, 98 % efficiency of the characteristic velocity, a specific impulse of 123 sec at sea level.

Extractions of Chlorophyll from Spinach and Mate Powders and Their Dyeability on Fabrics (시금치와 마테 분말을 이용한 클로로필 추출과 직물 염색)

  • Yoo, Hye Ja;Ahn, Cheunsoon;Narantuya, Lkhagva
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.3
    • /
    • pp.413-423
    • /
    • 2013
  • Chlorophyll is an abundant pigment found in all green plants, algae, and cyanobacteria. This study uses methanol, acetone and water to extract spinach and mate powders in order to examine the possibility of dyeing animal fibers with chlorophyll without chemical alteration. It was shown that methanol extracts of spinach and mate powders can be effectively used to dye wool and silk fabrics if the extract is mixed with water by methanol:water 65:35 v/v. Compared to methanol extract, the acetone extract showed lower chlorophyll yield and lower dye uptake. Water was not an appropriate solvent for chlorophyll extraction and dyeing. Spinach powder showed a higher dye uptake than mate powder due to the higher chlorophyll content than mate powder. It is possible that the chlorophyll dyeing of wool and silk fabrics is due to the hydrogen bonding between the hydroxy amino acids in fiber and the carbonyl groups of chlorophyll. These carbonyl groups are on the heterocyclic ring and the methyl and ethyl side chains of chlorophyll.

Comparison of Land Farming and Chemical Oxidation based on Environmental Footprint Analysis (환경적 footprint 분석을 통한 토양경작법과 화학적산화법의 비교)

  • Kim, Yun-Soo;Lim, Hyung-Suk;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.7-14
    • /
    • 2015
  • In this study, land farming and chemical oxidation of a diesel-contaminated site is compared to evaluate the environmental impact during soil remediation using the Spreadsheet for Environmental Footprint Analysis by U.S. EPA. Each remediation process is divided into four phases, consisting of soil excavation, backfill and transportation (Phase 0), construction of remediation facility (Phase 1), remediation operation (Phase 2), and restoration of site and waste disposal (Phase 3). Environmental footprints, such as material use, energy consumption, air emission, water use and waste generation, are analyzed to find the way to minimize the environmental impact. In material use and waste generation, land farming has more environmental effect than chemical oxidation due to the concrete and backfill material used to construct land farming facility in Phase 1. Also, in energy use, land farming use about six times more energy than chemical oxidation because of cement production and fuel use of heavy machinery, such as backhoe and truck. However, carbon dioxide, commonly considered as important factor of environmental impact due to global warming effect, is emitted more in chemical oxidation because of hydrogen peroxide production. Water use of chemical oxidation is also 2.1 times higher than land farming.