• 제목/요약/키워드: Greek mathematics

검색결과 44건 처리시간 0.018초

Mathematics Education as a Humanities Form of Education-A Brief Introduction to the History of the Philosophy of Mathematics Education

  • Han, Dae-Hee
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제5권2호
    • /
    • pp.127-132
    • /
    • 2001
  • Mathematics holds a key position among many subjects of school education. Besides having an instrumental value, mathematics for the general public has been underestimated. Thus, in this paper we examine how western educational theorists have emphasized the value of mathematics as humanities form of education. First of all, we discuss Platonism as a philosophical basis of the ancient Greek mathematics education. Next, we examine the thoughts of Froebel, who provided the theoretical basis for the public education since 19th century, and discuss the value of mathematics teaching in their humanistic educational thoughts. Also, we examine the humanistic value of mathematics education in Dewey\\`s educational philosophy, which criticized the traditional western ethics and epistemology, and established instrumentalism. In this paper, we recognize the humanistic values of mathematics education through the historical examination of the philosophies of mathematics education.

  • PDF

소수의 역사적 기원과 의의

  • 강흥규;변희현
    • 한국수학사학회지
    • /
    • 제16권3호
    • /
    • pp.69-76
    • /
    • 2003
  • In this article, We explained the historical origin and significance of decimal fraction, and draw some educational implications based on that. In general, it is accepted that decimal fraction was first invented by a Belgian man, Simon Stevin(1548-1620). In short, the idea of infinite decimal fraction refers to the ratio of the whole quantity to a unit. Stevin's idea of decimal fraction is significant for the history of mathematics in that it broke through the limit of Greek mathematics which separated discrete quantity from continuous quantity, and number from magnitude, and it became the origin of modern number concept. H. Eves chose the invention of decimal fraction as one of the "Great moments of mathematics."The method of teaching decimal fraction in our school mathematics tends to emphasize the computational aspect of decimal fraction too much and ignore the conceptual aspect of it. In teaching decimal fraction, like all the other areas of mathematics, the conceptual aspect should be emphasized as much as the computational aspect.al aspect.

  • PDF

미술에 표현된 수학의 무한사상 (Mathematical Infinite Concepts in Arts)

  • 계영희
    • 한국수학사학회지
    • /
    • 제22권2호
    • /
    • pp.53-68
    • /
    • 2009
  • 고대 그리스에서 발현된 수학의 무한 개념은 헤브라이인의 유대교 전통인 카발라의 영향을 받아 중세 기독교 교부 철학자들에 의해 보다 성숙되어져 갔으며, 그 후 기독교의 무한사상이 르네상스 시대에는 화가들에 의해 원근법으로 구체화되었다. 본 논문에서는 그리스 시대부터 발전된 무한 개념의 경로를 살펴보고, 근대와 19세기 이후 무한수학이 발달될 때 당시 미술에서는 무한 개념이 어떻게 표현되었는지 그 시대정신을 고찰한다.

  • PDF

Understanding the Estimation of Circumference of the Earth by of Eratosthenes based on the History of Science, For Earth Science Education

  • Oh, Jun-Young
    • 대한지구과학교육학회지
    • /
    • 제10권2호
    • /
    • pp.214-225
    • /
    • 2017
  • 지구크기에 대한 최초의 정확한 측정은 기원전 230년, 헬레니즘의 과학자인, 에라토스테네스 (276-195 B.C.)에 의하여 이루어졌다. 역사적으로 수학적 추상화는 유럽의 고대 그리스인의 천재성을 보여주는 좋은 예이다. 그 당시에는 상상하기 어려운 태양이 멀리 떨어져 있기에 태양광선이 평행하게 지구에 입사한다는 전제를 요구하는, 논리적이고 과학적인 기법의 에라토스테네스의 과학적 방법의 성공이었다. 중요한 것은 간단한 수학적 비례식을 성립하기 위해서는 지구가 둥글고, 광선이 지구에 나란하게 들어온다는 가정이 필요하였다. 즉 천상으로부터 지상으로 유클리드 기학학이 연결된다는 내용이다. 그것은 최초로 태양중심을 주장한 아리스타쿠스의 제안을 받아들여야 했고, 아리스토텔레스의 자연관인 우주는 아름답고 우아하다는 사상에 기반을 두어 지구는 구처럼 대칭적이라는 것이다. 우리는 이러한 가정들을 현대가 아닌 그 당시 어떻게 정당화 했는지를 탐색하는 것이다. 또한 실험의 미적 관점에서 에라토스테네스의 지구측정의 중요한 특징은 단순성에 있다는 것을 강조하는 것이다.

중학교 기하에서의 공리와 증명의 취급에 대한 분석 (An Analysis on the Treatment of Axiom and Proof in Middle School Mathematics)

  • 이지현
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제21권2호
    • /
    • pp.135-148
    • /
    • 2011
  • 우리나라 중학교 수학 2에서는 공리의 역할을 하는 명제를 공리라는 명시 없이, 실험에 의해 확인한 옳은 결과로만 받아들여 증명에 사용한다. 그러나 공리 개념은 경험적 입증과 연역적 증명, 직관기하와 논증기하, 증명과 증명이 아닌 것의 차이를 이해하는데 매우 중요한 것이다. 본 연구의 교과서 분석과 영재학생들을 대상으로 한 인식조사 결과는, 공리와 증명의 취급에 대하여 우리나라 교과서가 가진 한계와 문제점을 보여주고 있다.

  • PDF

고대 이집트, 고바빌로니아, 고대 그리스 수학에 나타난 원주율 논쟁 (Controversial History of Pi in Ancient Egypt, Old Babylonia, and Ancient Greek Mathematics)

  • 박제남
    • 한국수학사학회지
    • /
    • 제33권4호
    • /
    • pp.223-236
    • /
    • 2020
  • We examine how the formulas of the area and the circumference of a circle related to pi in the ancient Egyptian and the Old Babylonian fields of mathematics have been controversial. In particular, the Great Pyramid of Khufu, Ahmes Papyrus Problem 48 and Moscow Mathematical Papyrus Problem 10 have raised extensive controversy over π. We propose the pi-theory of the Great Pyramid of Khufu as a dynamic symmetry based on Euclid's rectangle. In addition, we argue that the ancient Egyptian or Old Babylonian mathematics influenced Solomon's Molten Sea, Plato and Archimedes' pi.

ACCURATE AND EFFICIENT COMPUTATIONS FOR THE GREEKS OF EUROPEAN MULTI-ASSET OPTIONS

  • Lee, Seunggyu;Li, Yibao;Choi, Yongho;Hwang, Hyoungseok;Kim, Junseok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권1호
    • /
    • pp.61-74
    • /
    • 2014
  • This paper presents accurate and efficient numerical methods for calculating the sensitivities of two-asset European options, the Greeks. The Greeks are important financial instruments in management of economic value at risk due to changing market conditions. The option pricing model is based on the Black-Scholes partial differential equation. The model is discretized by using a finite difference method and resulting discrete equations are solved by means of an operator splitting method. For Delta, Gamma, and Theta, we investigate the effect of high-order discretizations. For Rho and Vega, we develop an accurate and robust automatic algorithm for finding an optimal value. A cash-or-nothing option is taken to demonstrate the performance of the proposed algorithm for calculating the Greeks. The results show that the new treatment gives automatic and robust calculations for the Greeks.

초등학교 수학 교과서가 다루는 수학사의 보완 방안 -수학문화의 전이를 중심으로- (A Direction of a Complement of the Elementary School Mathematics History Described in the Texts - Focusing on Mathematical Transculture)

  • 박제남
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제28권4호
    • /
    • pp.493-511
    • /
    • 2014
  • 우리는 본 논문에서 초등학교 수학 교과서가 다루는 주요 수학사를 알아보았다. 우리나라 초등수학 교과서는 기축시대가 반영된 수학사를 다루고 있으며, 또한, 고대 이집트, 고 바빌로니아, 그리고 이슬람 수학을 배제하고 고대 그리스에서 로마, 유럽으로 수학문화의 전이를 왜곡하여 다루고 있다. 이를 초등수학 교과서를 통하여 알아보고 그 보완방안을 제시하였다.

고대 바빌로니아 Plimpton 322의 역사적 고찰 (Review and Interpretations of Plimpton 322)

  • 김민경
    • 한국수학사학회지
    • /
    • 제20권1호
    • /
    • pp.45-56
    • /
    • 2007
  • 수학을 배운 사람이라면 수십 년이 지나서도 기억되고 회자되는 것으로 피타고라스의 정리를 꼽을 수 있다. 그런데 역사적으로 이 정리를 중요한 위치로 자리 잡게 한 역할은 피타고라스 이전, 고대 바빌로니아 시대의 이름 모를 사람들의 노력 이었으며 이를 보여주는 흔적 중 하나가 'Plimpton 322‘라는 점토판을 들 수 있다. 본 고에서는 피타고라스의 정리를 완성하게 영감을 준 Plimpton 322의 내용을 소개하며 적혀 있는 숫자들의 해석과 함께 그 시대의 뛰어난 수학적 수준을 재조명해 보고자 한다.

  • PDF

A MODELING PERSPECTIVE OF DELIBERATE SELF-HARM

  • Do, Tae-Sug;Lee, Young-S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제14권4호
    • /
    • pp.275-284
    • /
    • 2010
  • Deliberate self-harm (DSH) is the act of deliberately harming your own body, such as cutting or burning yourself, without suicidal intent. It has especially become a problem among adolescents and college-age students in institutional settings such as boarding schools, Greek houses, detention centers and hospitals. We focus on contagion of DSH among adolescents and young adults by creating a deterministic epidemiological model. We study the impact of actual peer pressure, virtual peer pressure (the Internet) and treatment analytically in terms of a basic reproduction number through stability analysis of a system of ordinary differential equations. All parameters are approximated and results are also explored by simulations. The model shows that DSH is present in an endemic state in the population considered, and the control strategies are discussed.