• Title/Summary/Keyword: Gray-level Distortion

Search Result 19, Processing Time 0.024 seconds

Geometric distortion correction of fluorescein ocular fundus photographs (형광 안저 사진의 기하 왜곡 교정)

  • 권갑현;하영호;김수중
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.183-192
    • /
    • 1991
  • Ophthalmoscopy following the intravenous injection of fluorescein has gained great diagnostic importance in ophthalmology. This technique provides sequential evaluation of the anatomic and physiologic status of the choroidal and retinal vasculature. In order to detect the changes between fluorescein ocular fundus image frames, the direct subtraction of the two frames is inadequate because of geometric distortions and background gray level differences in two images. In this study, a scheme for the correction of the geometric distortions is proposed. Precise control point coordinate values for transformation functions are manually determined after the process including a series of blood vessel detection and thinning, and one frame is mapped to another, and then a geometric distortion corrected image is obtained. When the corrected image is used in interframe change detections, a sucessful result is ensured.

  • PDF

Optimal Localization through DSA Distortion Correction for SRS

  • Shin, Dong-Hoon;Suh, Tae-Suk;Huh, Soon-Nyung;Son, Byung-Chul;Lee, Hyung-Koo;Choe, Bo-Young;Shinn, Kyung-Sub
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2000
  • In Stereotactic Radiosurgery (SRS), there are three imaging methods of target localization, such as digital subtraction Angiography (DSA), computed tomography (CT), magnetic resonance imaging (MRI). Especially, DSA and MR images have a distortion effect generated by each modality. In this research, image properties of DSA were studied. A first essential condition in SRS is an accurate information of target locations, since high dose used to treat a patient may give a complication on critical organ and normal tissue. Hut previous localization program did not consider distortion effect which was caused by image intensifier (II) of DSA. A neurosurgeon could not have an accurate information of target locations to operate a patient. In this research, through distortion correction, we tried to calculate accurate target locations. We made a grid phantom to correct distortion, and a target phantom to evaluate localization algorithm. The grid phantom was set on the front of II, and DSA images were obtained. Distortion correction methods consist of two parts: 1. Bilinear transform for geometrical correction and bilinear interpolation for gray level correction. 2. Automatic detection method for calculating locations of grid crosses, fiducial markers, and target balls. Distortion was corrected by applying bilinear transform and bilinear interpolation to anterior-posterior and left-right image, and locations of target and fiducial markers were calculated by the program developed in this study. Localization errors were estimated by comparing target locations calculated in DSA images with absolute locations of target phantom. In the result, the error in average with and without distortion correction is $\pm$0.34 mm and $\pm$0.41 mm respectively. In conclusion, it could be verified that our localization algorithm has an improved accuracy and acceptability to patient treatment.

  • PDF

Simulations on Crosstalk of Pixel Voltage Compensation Methods (화소 전압 보상 방법에 대한 Crosstalk 특성 시뮬레이션)

  • Kim, Tae-Hyung;Park, Jae-Woo;Kim, Jin-Hong;Choi, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.449-451
    • /
    • 2000
  • Crosstalk is the primary cause of image distortion in active matrix liquid crystal displays (AMLCD). Crosstalk produces voltage errors that limit gray scale fidelity and consequently, degrades display resolution, contrast ratio, color fidelity, and image quality. In this study, crosstalk phenomena of some methods to compensate level shift voltages has been simulated. This will be contributed to find the way to design the excellent image quality of the TFT-LCDs.

  • PDF

Study of point defects caused by a thin contamination layer in a-Si TFT-LCD

  • Oh, Jae-Young;Lee, Jae-Kyun;Yang, Moung-Su;Kang, In-Byeong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.845-848
    • /
    • 2007
  • Analysis of point defects invisible by a microscope has been studied on the a-Si thin film transistor panel. The point defects which were named Invisible Point Defect (IPD) is characterized by no particles or distortion of patterns on a pixel structure and randomly distributed on panels. To investigate the IPD, measurements were carried out: gray level driving, transistor transfer characteristic, focused ion beam (FIB), and secondary ion mass spectrometry (SIMS). The results showed that a contamination layer had a bad influence on an active surface. The contamination layer consisted of oxygen and iron from a water supply line during cleaning process. After the process tuning, IPD has been stabilized.

  • PDF

Advanced-MVA(A-MVA) Mode for High Quality LC Displays

  • Huang, Yi-Pai;Huang, Wei-Kai;Tsao, Cheng-Han;Su, Jeng-Jia;Hou, Hong-Lung;Liao, Pei-Chun;Chiu, Chung-Yi;Lee, Chia-Yu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.387-390
    • /
    • 2007
  • Advanced-MVA(A-MVA) for LCD-TV application was proposed to yield high performance LCD-TV. By utilizing Additional Refresh Technology(ART), which has 2-TFTs but with single source and gate line only. The A-MVA can yield low color washout, fast response, and optimized brightness. AMVA has become the promising solution of advanced LCDTV panels for mass-production.

  • PDF

Image Comparison of Heavily T2 FLAIR and DWI Method in Brain Magnetic Resonance Image (뇌 자기공명영상에서 Heavily T2 FLAIR와 DWI 기법의 영상비교)

  • EunHoe Goo
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.397-403
    • /
    • 2023
  • The purpose of this study is to obtain brain MRI images through Heavenly T2 FLAIR and DWI techniques to find out strengths and weaknesses of each image. Data were analyzed on 13 normal people and 17 brain tumor patients. Philips Ingenia 3.0TCX was used as the equipment used for the inspection, and 32 Channel Head Coil was used to acquire data. Using Image J and Infinity PACS Data, 3mm2 of gray matter, white matter, cerebellum, basal ganglia, and tumor areas were set and measured. Quantitative analysis measured SNR and CNR as an analysis method, and qualitative analysis evaluated overall image quality, lesion conspicuity, image distortion, susceptibility artifact and ghost artifact on a 5-point scale. The statistical significance of data analysis was that Wilcox-on Signed Rank Test and Paired t-test were executed, and the statistical program used was SPSS ver.22.0 and the p value was less than 0.05. In quantitative analysis, the SNR of gray matter, white matter, cerebellum, basal ganglia, and tumor of Heavily T2 FLAIR is 41.45±0.13, 40.52±0.45, 41.44±0.51, 40.96±0.09, 35.28±0.46 and the CNR is 15.24±0.13, 16.75±0.23, 16.28±0.41, 15.83±0.17, 16.63±0.51. In DWI, SNR is 32.58±0.22, 36.75±0.17, 30.21±0.19, 35.83±0.11, 43.29±0.08, and CNR is 13.14±0.63, 14.21±0.31, 12.95±0.32, 11.73±0.09, 17.56±0.52. In normal tissues, Heavenly T2 FLAIR obtained high results, but in disease evaluation, high results were obtained at DWI, b=1000 (p<0.05). In addition, in the qualitative analysis, overall image quality, lesion conspicuity, image distortion, susceptibility artifact and ghost artifact aspects of the Heavily T2 FLAIR were evaluated, and 3.75±0.28, 2.29±0.24, 3.86±0.23, 4.08±0.21, 3.79±0.22 values were found, respectively, and 2.53±0.39, 4.13±0.29, 1.90±0.20, 1.81±0.21, 1.52±0.45 in DWI. As a result of qualitative analysis, overall image quality, image distortion, susceptibility artifact and ghost artifact were rated higher than DWI. However, DWI was evaluated higher in lesion conspicuity (p<0.05). In normal tissues, the level of Heavenly T2 FLAIR was higher, but the DWI technique was higher in the evaluation of the disease (tumor). The two results were necessary techniques depending on the normal site and the location of the disease. In conclusion, statistically significant results were obtained from the two techniques. In quantitative and qualitative analysis, the two techniques had advantages and disadvantages, and in normal and disease evaluation, the two techniques produced useful results. These results are believed to be educational data for clinical basic evaluation and MRI in the future.

Implementation of PDF417 Two-Dimensional Barcode Decoder (PDF417 이차원 바코드 디코더의 구현)

  • Hahn Hee Il;Joung Joung Goo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.1
    • /
    • pp.77-82
    • /
    • 2004
  • In this paper we present a barcode reader to decode two-dimensional symbology PDF417 and propose a novel method to extract the bar-space Patterns directly from the gray-level barcode image, which employs the location and the distance between extreme points of each row or column of the barcode image. This algerian proves to be very robust from the high convolutional distortion environments such as defocussing and warping, even under badly illuminating condition. If the scanned barcode image is a result of the convolution of a Gaussian-shaped point spread function with a hi-level image, popular image segmentation methods such as image thresholding can not distinguish between very narrow bar-space patterns. The Proposed algorithm shows improved Performance over current barcode readers.

Development of Adaptive Digital Image Watermarking Techniques (적응형 영상 워터마킹 알고리즘 개발)

  • Min, Jun-Yeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.1112-1119
    • /
    • 1999
  • Digital watermarking is to embed imperceptible mark into image, video, audio and text data to prevent the illegal copy of multimedia data, arbitrary modification, and also illegal sales of the copes without agreement of copyright ownership. The DCT(discrete Cosine Transforms) transforms of original image is conducted in this research and these DCT coefficients are expanded by Fourier series expansion algorithm. In order to embed the imperceptible and robust watermark, the Fourier coefficients(lower frequency coefficients) can be calculated using sine and cosine function which have a complete orthogonal basis function, and the watermark is embedded into these coefficients, In the experiment, we can show robustness with respect to image distortion such as JPEG compression, bluring and adding uniform noise. The correlation coefficient are in the range from 0.5467 to 0.9507.

  • PDF

Color Restoration Method Using the Dichromatic Reflection Model for Low-light-level Environments (저조도 환경에 적합한 이색도 반사 모델을 이용한 색 복원 기법)

  • Lee, Woo-Ram;Jun, WooKyoung;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7324-7330
    • /
    • 2014
  • Color distortion of the dark images acquired under a low-light-level environment with a weak light source can be cause of the performance decreation of various vision systems. Therefore, recovering the original color of the images is an important process for enhancing the performance of the system. For this, this study proposes a color restoration method using a dichromatic reflection model. This paper assumes that the dark images can be classified into two parts affected by specular or diffuse reflection. Two different color constancy methods were then applied to the images to remove the effects of each reflection and two images were created as a result. The resulting images produced a one color-corrected image by combining with different weights according to the position in the images. For the performance evaluation, this paper used a synthesized image, and considered the Euclidean distance and angular error as an evaluation factor. In addition, a performance comparison was performed with the existing various color constancy method to achieve the objectivity of evaluation. The experimental results showed that the proposed method can be a more suitable solution for color restoration than the existing method.