• Title/Summary/Keyword: Gravure ink

Search Result 49, Processing Time 0.029 seconds

A Study on the Ink Transfer Using the Roughness and Substrate Energy of Substrate in Roll to Roll Printing Systems (롤투롤 인쇄 시스템에서의 기판 소재의 거칠기와 표면에너지를 이용한 잉크 전이에 대한 연구)

  • Shin, Kee-Hyun;Kim, Ho-Joon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.103-109
    • /
    • 2010
  • An ink transfer is modeled and experimentally verified using roll-to-roll electric direct gravure printing process. The ink transfer model based on the physical mechanism for the maximum ink transfer rate is proposed, and experimented by the electric printing machine in FDRC for the relations of the maximum ink transfer rates to the printing pressure, the operating speed, the operating tension, the surface roughness of substrates, and the contact angle between substrate and silver ink. The free ink split coefficient and immobilized ink under the maximum ink transfer rate are calculated by the physical parameter in a printing process and contact angle between substrates and ink. Numerical simulations and experimental studies were carried out to verify performances of the proposed ink transfer model. Results showed that the proposed ink transfer model was effective for the prediction of the amount of transferred ink to the substrate in a direct gravure printing systems.

The Effects of Doctoring Process in Gravure Off-set Printing on Patterning of Electrodes with Ag Ink (은 잉크를 이용한 그라비아 오프셋의 전극인쇄에서 닥터링 공정의 영향)

  • Choi, Ki Seong;Park, Jin Seok;Song, Chung-Kun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.462-467
    • /
    • 2013
  • In this paper, we analyzed the effects of doctoring process on the patterns of Ag ink in gravure off-set printing. The parameters of doctoring process were the angle and the pressure, which was represented by the depth of blade movement to the gravure roll, of doctor blade to the surface of gravure roll, and the angle of patterns engraved on the gravure roll to the doctor blade moving direction. The proper parameters were extracted for the fine patterns and they were 15 mm for the pressure, $60^{\circ}$ for the blade angle. And the angle of patterns with respect to the blade movement should be less than $40^{\circ}$ for the best results. The gravure off-set printing with the above parameters was carried out to print gate electrodes and scan bus lines of OTFT-backplane for e-paper. The line width of $50{\mu}m$ was successfully obtained. The thickness of electrodes was $2.5{\mu}m$ and the surface roughness was $0.65{\mu}m$ and the sheet resistance was $15.8{\Omega}/{\Box}$.

Study of Liquid Transfer Process for micro-Gravure-Offset Printing (마이크로 그라비아 옵셋 프린팅에서의 유체 전이 공정에 관한 연구)

  • Kang, Hyun-Wook;Huang, Wei-Xi;Sung, Hyung-Jin;Lee, Taik-Min;Kim, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1098-1102
    • /
    • 2008
  • To increase the ink transfer rate in the micro-gravure-offset printing, the liquid transfer process between two separating plates is investigated. During the liquid transfer process, in which one plate is fixed and the other one moves vertically, a sessile droplet is separated into two droplets. The volume ratio of the two droplets depends on the contact angles of the two plates. In a numerical study of the ink transfer processes, liquid transfer between two parallel separating plates and between a trapezoidal cavity and an upward moving plate are simulated, as models of the printing of ink from the offset pad onto the substrate and the picking up of ink from the gravure plate by the offset pad, respectively. Also, in experimental study, to obtain various surface contact angles, chemical treatment, plasma treatment, and electrowetting- on-dielectric (EWOD) surface are considered. The transfer rate between two plates is calculated by analyzing the droplet images. From the results, the optimal surface contact angles of the units of the micro-gravure-offset printing can be characterized.

  • PDF

Evaluating Interfacial Force between Viscoelastic Ink and Substrate in Gravure Printing Process (그라비아 프린팅 공정에서 점탄성 잉크와 기판의 계면접착력 평가)

  • Yu, Milim;Ahn, Kyung Hyun;Lee, Seung Jong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.111-115
    • /
    • 2015
  • To produce patterns with high resolution in gravure printing, it is important to increase ink transfer ratio. The ink which has higher affinity with substrate can be transferred more from the roll to the substrate due to the good wettability between ink and substrate. However, it is difficult to evaluate the affinity between the substrate and the ink which is viscoelastic in nature. In this study, we suggest a practical method to evaluate the interfacial interaction between the ink and various substrates.

Computer Simulation for Ink Transfer from Cell onto Paper in the Gravure (그라비어 印刷에서 잉크 轉移에 관한 시뮬레이션)

  • Youn, Jong-Tae;Kim, Kwang-Heui;Kim, Byung-Tak
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.21 no.2
    • /
    • pp.21-29
    • /
    • 2003
  • In gravure printing, all of the ink in the gravure cells does not leave the cell onto the substrate. The ink transfer from plate to paper in the gravure printing was simulated by computer. A few studies have dealt with cell withdrawal with simplified Newtonian flow models however, this work was performed with the non-Newtonian inks with different simulation software.

  • PDF

A Study on the Simulation of Ink Penetration into the Uncoated Papers in Gravure Printing (그라비어 인쇄에서 비도피지의 잉크 침투 시뮬레이션에 관한 연구)

  • Seo, Yea-Ri;Youn, Jong-Tae
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • Gravure printing and manufacturing of advanced electronic components in a way that is going extra hold position. It is to print the electronic components of the rapid productivity improvements as well as cost-saving and environment-friendly industries such as the transition is a big advantage. However the mechanism of gravure is difficult to study scientifically because of high speed and excessively small size of the cell. To approach the mechanism we experimented using gravure printability. The condition of variables of IGT is pressure and velocity. By using Flow-3D simulation software, we built up the theoretical model under the constant variables. Then, we compared the real test with the simulation results. Therefore, it is studied the mechanism of gravure scientifically and it can be analysed the effect of the variable conditions.

Analysis of Ink Transfer Mechanism in Gravure-offset Printing Process (그라비아 옵셋 프린팅 공정에서의 잉크전이 메커니즘 해석 연구)

  • Lee, Seung-Hyun;Nam, Ki-Sang;Lee, Taik-Min;Yoon, Deok-Kyun;Jo, Jeong-Dai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1146-1152
    • /
    • 2011
  • Ink transfer process is very important to determine quality of printed pattern, therefore its mechanism should be understood to control printing quality. Although there have been many attempts to understand ink transfer mechanism by numerical simulation and experimental studies, their model was too much simple to model realistic printing process and our understanding is not enough yet. In this paper we designed ink transfer visualization system to present flow visualization of ink transfer process for gravure offset printing. We considered rotational effect of blanket roll which is related with printing speed and used non-Newtonian fluid as working fluid such as Ag paste. For printing unit, cantilever-type blanket roll is used for convenient visualization of ink transfer. Serial images were captured continuously by using high-speed CMOS camera and long range microscope. We investigated the effects of various design parameters such as printing speed and pattern angle on the ink transfer process. We found more stretched ink filament for non-Newtonian fluid than Newtonian fluid. As increasing printing speed, length of stretched ink filament and height of break-up point are also increased. We also compared ink transfer process between CD and MD pattern and its relationship with ink transfer mechanism.

A Transformation of Image Density making a Method of Plate in Printing a Gravure (제판방식에 의해 구분된 Gravure 인쇄의 농도 변화)

  • Jun, Joon-Bae;Shin Joong-Soon;Kang, Young-Reep
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.20 no.2
    • /
    • pp.69-83
    • /
    • 2002
  • This research attempts on plate making for gravure. Direct Hard Dot Method, Helio Kliso Graph, and Laser TB Dot; these three method are the most popular in Korea. For examining ink transmission, three plates were made in the above three different way for the same manuscript and were printed under the same condition. After printing speed was also varied into 150line/inch, 175line/inch, and 200line/inch, ink transmission was examined too. After printing the same manuscript with the above three method then the researcher examined level of ink transmission. Printing lines shows that Laser TB Dot Method and Direct Hard Dot Method were favorable level, while there was big differences of state of Helio Kliso Graph plate.

  • PDF