• Title/Summary/Keyword: Gravity Force

Search Result 451, Processing Time 0.027 seconds

HYSTERETIC MODELING ON THE CONVECTIVE TRANSPORT OF ORGANIC SOLVENT IN AN UNSATURATED SOIL ZONE

  • Lee, Kun-Sang
    • Environmental Engineering Research
    • /
    • v.11 no.5
    • /
    • pp.241-249
    • /
    • 2006
  • A mathematical model is described for the prediction of convective upward transport of an organic solvent driven by evaporation at the surface, which is known as the major transport mechanism in the in-situ photolysis of a soil contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD). A finite-element model was proposed to incorporate the effects of multiphase flow on the distribution of each fluid, gravity as a driving force, and the use of hysteretic models for more accurate description of k-S-p relations. Extensive numerical calculations were performed to study fluid flow through three types of soils under different water table conditions. Predictions of relative permeability-saturation-pressure (k-S-p) relations and fluids distribution for an illustrative soil indicate that hysteresis effects may be quite substantial. This result emphasizes the need to use hysteretic models in performing flow simulations including reversals of flow paths. Results of additional calculations accounting for hysteresis on the one-dimensional unsaturated soil columns show that gravity affects significantly on the flow of each fluid during gravity drainage, solvent injection, and evaporation, especially for highly permeable soils. The rate and duration of solvent injection also have a profound influence on the fluid saturation profile and the amount of evaporated solvent. Key factors influencing water drainage and solvent evaporation in soils also include hydraulic conductivity and water table configuration.

Consideration of a Circumsolar Dust Ring in Resonant Lock with the Venus

  • Jeong, Jin-Hoon;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.54-54
    • /
    • 2010
  • Interplanetary space is filled with dust particles originating mainly from comets and asteroids. Such interplanetary dust particles lose their angular momentum by olar radiation pressure, causing the dust grains to slowly spiral inward Poynting-Robertson effect). As dust particles move into the Sun under the influence of Poynting-Robertson drag force, they may encounter regions of resonance just outside planetary orbits, and be trapped by their gravities, forming the density enhancements in the dust cloud (circumsolar resonance ring). The circumsolar resonance ring near the Earth orbit was detected in the zodiacal cloud through observations of infrared space telescopes. So far, there is no observational evidence other than Earth because of the detection difficulty from Earth bounded orbit. A Venus Climate Orbiter, AKATSUKI, will provide a unique opportunity to study the Venusian resonance ring. It equips a near-infrared camera for the observations of the zodiacal light during the cruising phase. Here we consider whether Venus gravity produces the circumsolar resonance ring around the orbit. We thus perform the dynamical simulation of micron-sized dust particles released outside the Earth orbit. We consider solar radiation pressure, solar gravity, and planetary perturbations. It is found that about 40 % of the dust particles passing through the Venus orbit are trapped by the gravity. Based on the simulation, we estimate the brightness of the Venusian resonance ring from AKATSUKI's locations.

  • PDF

Seismic Performance Evaluation of Steel Moment Frame Factory Building with Slender Braces (세장한 가새가 사용된 철골모멘트골조 공장시설물의 내진 성능평가)

  • Kim, Dong Yeon;Cho, Jae Chul;Hwang, Sunwoo;Kim, Taejin;Kim, Jong Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • 'Seismic Performance Evaluation Method for Existing Buildings (2013)' developed in accordance with the overseas guidelines ASCE 41 - 06 is the most widely used procedure among domestic seismic performance evaluation guidelines in Korea. However, unlike ASCE 41 - 06, it stipulates that the final performance should be derived as the gravity load distribution ratio of the lateral force resistance system in the guideline. Therefore, in the case of a dual steel structure system with slender braces, where the internal moment frame is mostly responsible for the gravity load, the evaluation of slender braces based on gravity load distribution ratio is difficult to be achieved. In this research, we propose an objective evaluation process for such system by evaluating seismic performance for large-scale factory facilities as an example.

Seismic performance of gravity-load designed concrete frames infilled with low-strength masonry

  • Siddiqui, Umair A.;Sucuoglu, Haluk;Yakut, Ahmet
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.19-35
    • /
    • 2015
  • This study compares the seismic performances of two reinforced concrete frame specimens tested by the pseudo-dynamic procedure. The pair of 3-storey, 3-bay frames specimens are constructed with typical characteristics of older construction which is lacking seismic design. One of the specimens is a bare frame while the other is infilled with low-strength autoclave aerated concrete (AAC) block masonry. The focus of this study is to investigate the influence of low strength masonry infill walls on the seismic response of older RC frames designed for gravity loads. It is found that the presence of weak infill walls considerably reduce deformations and damage in the upper stories while their influence at the critical ground story is not all that positive. Infill walls tend to localize damage at the critical story due to a peculiar frame-infill interaction, and impose larger internal force and deformation demands on the columns and beams bounding the infills. Therefore the general belief in earthquake engineering that infills develop a second line of defence against lateral forces in seismically deficient frames is nullified in case of low-strength infill walls in the presented experimental research.

Investigations on the behaviour of corrosion damaged gravity load designed beam-column sub-assemblages under reverse cyclic loading

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.235-251
    • /
    • 2019
  • Corrosion of reinforcement is the greatest threat to the safety of existing reinforced concrete (RC) structures. Most of the olden structures are gravity load designed (GLD) and are seismically deficient. In present study, investigations are carried out on corrosion damaged GLD beam-column sub-assemblages under reverse cyclic loading, in order to evaluate their seismic performance. Five GLD beam-column sub-assemblage specimens comprising of i) One uncorroded ii) Two corroded iii) One uncorroded strengthened with steel bracket and haunch iv) One corroded strengthened with steel bracket and haunch, are tested under reverse cyclic loading. The performances of these specimens are assessed in terms of hysteretic behaviour, energy dissipation and strength degradation. It is noted that the nature of corrosion i.e. uniform or pitting corrosion and its location have significant influence on the behaviour of corrosion damaged GLD beam-column sub-assemblages. The corroded specimens with localised corrosion pits showed in-cyclic strength degradation. The study also reveals that external strengthening which provides an alternate force path but depends on the strength of the existing reinforcement bars, is able to mitigate the seismic risk of corroded GLD beam-column sub-assemblages to the level of control uncorroded GLD specimen.

Dynamic Stability of a Free-Free Beam with a Tip Rigid Body under a Controlled Pulsating Thrust (끝단 강체를 갖고 맥동 제어추력을 받는 양단 자유보의 동적 안정성)

  • Ryu, Bong-Jo;Lee, Gyu-Seop;Seong, Yun-Gyeong;Choe, Bong-Mun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.232-239
    • /
    • 2000
  • The paper describes the parametric instability of free-free beams subjected to a controlled pulsating follower force. The beam has a tip rigid body not a mass point, and the direction of pulsating follower force is controlled by the direction control sensor. Equations of motion are derived by Hamilton's principle and the instability regions are obtained by finite element formulation. The effects of magnitude, rotary inertia, the distance between free end of the beam and the center of gravity of the rigid body on the instability types and regions are investigated by the change of the constant and periodic part of the follower force.

A Study on the Digital Architectural Form expressed on the Movement, Force and Time - focused on the works based on the Deleuze.Guattari's idea of 'Simulacre' - (힘과 움직임 그리고 시간을 표현하는 디지털건축형태에 관한 연구 - 들뢰즈.가타리의 시뮬라크르 사유를 표출하는 사례를 중심으로 -)

  • Kang, Hoon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.8 no.2
    • /
    • pp.5-12
    • /
    • 2008
  • Since the past, an attempt of figuration which is for movement, time and force has existed constantly. A process of representative from expressed on the movement, time and force creates events, and the process through the events expresses the idea of a simulacre. Furthermore, Architectural works for potentiality to give a demonstration are in common with hybrid characteristics, and have lasting creation of flux architecture. Ignoring the gravity of the floating figuration, so it appears unrealistic hyperphysical virtual space that easily could make the life of creation. For this reason, the form generation based on the digital design method is expressed the important method. In conclusion, actualizing the virtual is the suitable way for 'devenir architecture' based upon the Deleuze Guattari's idea of 'simulacre' and creating the from generation on the contemporary digital architecture design in a similar way.

  • PDF

Computation of Stratified Flows using Finite Difference Lattice Boltzmann Method

  • Kang, Ho-Keun;Kim, Won-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.511-519
    • /
    • 2003
  • A stratified flow is simulated using the finite difference lattice Boltzmann method (FDLBM). The effect of body force (gravity) in a simple one-dimensional model with the lattice BGK 9 velocity is examined. The effect of body force in the compressible fluid is greatly different from that of the incompressible fluid In a compressible fluid under gravitational force, the density stratification is not sufficient and the entropy stratification is essential. The numerical simulation of a line sink compressible stratified flow in two-dimensional channel is also carried out. The results show that selective withdrawal is established when the entropy of the upper part increases. and the simulated results using FDLB method are satisfactory compared with the theoretical one.

A Study on the Balancing of V/W-type Reciprocating Air Compressor (V/W형 왕복동 공기압측기의 평형에 관한 연구)

  • 김형진;김성춘;김정만;김의간
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.1
    • /
    • pp.24-31
    • /
    • 2004
  • Recently, as the marine compressor power is increased, vibration problems on the marine vessel with V/W type reciprocating compressor have been occurred. A research on the balancing of marine V/W type reciprocating compressor has hardly been reported though a number of researches on the balancing of rotating machinery have been conducted. As a V/W type compressor has high capacity with long stroke, compact size and high center of gravity, It is easy to have a vibration problem by a little bit unbalanced force and moment. In this study, calculation methods for balance weight of the V/W type reciprocating compressors, which have different piston weight and asymmetry structure, are formulated. And their reliability were verified by comparing calculated balance weight with the experimental results of the real marine V/W type reciprocating compressors.

Factors Influencing on movement of crashed Vehicle by using EDSMAC (EDSMAC을 이용한 충돌 후 차량운동에 영향을 미치는 인자)

  • Jung, H.K.;Kang, D.M.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.42-48
    • /
    • 2002
  • Velocity change of crashed vehicle has been applied to assess the safety of passenger and degree of impact severity widely. In this study, 1 D crash analysis and 2 D crash analysis were performed for velocity change of crashed vehicle with HVE 2D, and factors used for these analysis are weight, C.G, roll resistance, stiffness and brake force which influence on velocity change of crashed vehicle. According to results, the velocity change of crashed vehicle was influenced by weight, center of gravity stiffness and brake force but not roll resistance.

  • PDF