• 제목/요약/키워드: Graphene on Si

검색결과 136건 처리시간 0.028초

Charge Neutral Quasi-Free-Standing Graphene on 6H-SiC(0001) Surface by Pd Silicidation and Intercalation

  • 송인경;신하철;박종윤;안종렬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.128-128
    • /
    • 2012
  • We investigated the atomic and electronic properties of graphene grown by Pd silicidation and intercalation using LEED, STM, and ARPES. Pd was deposited on the 6H-SiC(0001) surface at RT. The formation of Pd silicide gives rise to breaking of Si-C bonds of the SiC crystal, which enables to release C atoms at low temperature. The C atoms are transformed into graphene from $860^{\circ}C$ according to the LEED patterns as a function of annealing temperature. Even though the graphene spots were observed in the LEED pattern and the Fourier transformed STM images after annealing at $870^{\circ}C$, the topography images showed various superstructures so that graphene is covered with Pd silicide residue. After annealing at $950^{\circ}C$, monolayer graphene was revealed at the surface. The growth of graphene is not limited by surface obstacles such as steps and defects. In addition, we observed that six protrusions consisting of the honeycomb network of graphene has same intensity meaning non-broken AB-symmetry of graphene. The ARPES results in the vicinity of K point showed the non-doped linear ${\pi}$ band structure indicating monolayer graphene decoupled from the SiC substrate electronically. Note that the charge neutrality of graphene grown by Pd silicidation and intercalation was sustained regardless of annealing temperature in contrast with quasi-free- standing graphene induced by H and Au intercalation. Further annealing above $1,000^{\circ}C$ accelerates sublimation of the Pd silicide layer underneath graphene. This results in appearance of the $(6r3x6r3)R30^{\circ}$ structure and dissolution of the ${\pi}$ bands for quasi-free-standing graphene.

  • PDF

Selective Catalytic Etching of Graphene by SiOx Layer Depletion

  • 이경재;임규욱;양미현;강태희;정석민
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.163.2-163.2
    • /
    • 2014
  • We report catalytic decomposition of few-layer graphene on an $Au/SiO_x/Si$ surface wherein oxygen is supplied by dissociation of the native $SiO_x$ layer at a relatively low temperature of $400^{\circ}C$. The detailed chemical evolution of the graphene covered $SiO_x/Si$ surface with and without gold during the catalytic process is investigated using a spatially resolved photoelectron emission method. The oxygen atoms from the native $SiO_x$ layer activate the gold-mediated catalytic decomposition of the entire graphene layer, resulting in the formation of direct contact between the Au and the Si substrate. The notably low contact resistivity found in this system suggests that the catalytic depletion of a $SiO_x$ layer could realize a new way to micromanufacture high-quality electrical contact.

  • PDF

열처리 조건에 따른 3C-SiC 박막을 이용한 그래핀 합성 (Synthesis of Graphene Using 3C-SiC Thin Films with Thermal Annealing Conditions)

  • 김강산;정귀상
    • 센서학회지
    • /
    • 제21권5호
    • /
    • pp.385-388
    • /
    • 2012
  • This paper describes the synthesis and characterization of graphene by RTA process. Amorphous 3C-SiC were deposited using APCVD for carbon source and Ni layer were employed for transition layer. Various parameters of the ramping speed, the annealing time and the cooling speed are evaluated for the optimized combination allowed for the reproducible fabrication of graphene using 3C-SiC thin film. For analysis of crystalline Raman spectra was employed. Transferred graphene shows a high IG/ID ratio of 2.73. SEM and TEM images show the optical transparency and 6 carbon network, respectively. Au electrode deposited on the transferred graphene shows linear I-V curve and its resistance is 358 ${\Omega}$.

Free-standing graphene intercalated nanosheets on Si(111)

  • Pham, Trung T.;Sporken, Robert
    • 전기전자학회논문지
    • /
    • 제21권3호
    • /
    • pp.297-308
    • /
    • 2017
  • By using electron beam evaporation under appropriate conditions, we obtained graphene intercalated sheets on Si(111) with an average crystallite size less than 11nm. The formation of such nanocrystalline graphene was found as a time-dependent function of carbon deposition at a substrate temperature of $1000^{\circ}C$. The structural and electronic properties as well as the surface morphology of such produced materials have been confirmed by reflection high energy electron diffraction, Auger electron spectroscopy, X-ray photoemission spectroscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy and scanning tunneling microscopy.

In-situ magnetization measurements and ex-situ morphological analysis of electrodeposited cobalt onto chemical vapor deposition graphene/SiO2/Si

  • Franco, Vinicius C. De;Castro, Gustavo M.B.;Corredor, Jeaneth;Mendes, Daniel;Schmidt, Joao E.
    • Carbon letters
    • /
    • 제21권
    • /
    • pp.16-22
    • /
    • 2017
  • Cobalt was electrodeposited onto chemical vapor deposition (CVD) graphene/Si/$SiO_2$ substrates, during different time intervals, using an electrolyte solution containing a low concentration of cobalt sulfate. The intention was to investigate the details of the deposition process (and the dissolution process) and the resulting magnetic properties of the Co deposits on graphene. During and after electrodeposition, in-situ magnetic measurements were performed using an (AGFM). These were followed by ex situ morphological analysis of the samples with ${\Delta}t_{DEP}$ 30 and 100 s by atomic force microscopy in the non-contact mode on pristine CVD graphene/$SiO_2$/Si. We demonstrate that it is possible to electrodeposit Co onto graphene, and that in-situ magnetic measurements can also help in understanding details of the deposition process itself. The results show that the Co deposits are ferromagnetic with decreasing coercivity ($H_C$) and demonstrate increasing magnetization on saturation ($M_{SAT}$) and electric signal proportional to remanence ($M_r$), as a function of the amount of the electrodeposited Co. It was also found that, after the end of the dissolution process, a certain amount of cobalt remains on the graphene in oxide form (this was confirmed by X-ray photoelectron spectroscopy), as suggested by the magnetic measurements. This oxide tends to exhibit a limited asymptotic amount when cycling through the deposition/dissolution process for increasing deposition times, possibly indicating that the oxidation process is similar to the graphene surface chemistry.

Raman spectroscopy study of graphene on Ni(111) and Ni(100)

  • Jung, Dae-Sung;Jeon, Cheol-Ho;Song, Woo-Seok;Jung, Woo-Sung;Choi, Won-Chel;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.59-59
    • /
    • 2010
  • Graphene is a 2-D sheet of $sp^2$-bonded carbon arranged in a honeycomb lattice. This material has attracted major interest, and there are many ongoing efforts in developing graphene devices because of its high charge mobility and crystal quality. Therefore clear understanding of the substrate effect and mechanism of synthesis of graphene is important for potential applications and device fabrication of graphene. In a published paper in J. Phys. Chem. C (2008), the effect of substrate on the atomic/electronic structures of graphene is negligible for graphene made by mechanical cleavage. However, nobody shows the interaction between Ni substrate and graphene. Therefore, we have studied this interaction. In order to studying these effect between graphene and Ni substrate, We have observed graphene synthesized on Ni substrate and graphene transferred on $SiO_2$/Si substrate through Raman spectroscopy. Because Raman spectroscopy has historically been used to probe structural and electronic characteristics of graphite materials, providing useful information on the defects (D-band), in-plane vibration of sp2 carbon atoms (G-band), as well as the stacking orders (2D-band), we selected this as analysis tool. In our study, we could not observe the doping effect between graphene and Ni substrate or between graphene and $SiO_2$/Si substrate because the shift of G band in Raman spectrum was not occurred by charge transfer. We could noticed that the bonding force between graphene and Ni substrate is more strong than Van de Waals force which is the interaction between graphene and $SiO_2$/Si. Furthermore, the synthesized graphene on Ni substrate was in compressive strain. This phenomenon was observed by 2D band blue-shift in Raman spectrum. And, we consider that the graphene is incommensurate growth with Ni polycrystalline substrate.

  • PDF

유도결합 플라즈마 화학기상증착법을 이용한 Ni/SiO2/Si 기판에서 그라핀 제조 (Synthesis of Graphene on Ni/SiO2/Si Substrate by Inductively-Coupled Plasma-Enhanced Chemical Vapor Deposition)

  • 박영수;허훈회;김의태
    • 한국재료학회지
    • /
    • 제19권10호
    • /
    • pp.522-526
    • /
    • 2009
  • Graphene has been effectively synthesized on Ni/SiO$_2$/Si substrates with CH$_4$ (1 SCCM) diluted in Ar/H$_2$(10%) (99 SCCM) by using an inductively-coupled plasma-enhanced chemical vapor deposition. Graphene was formed on the entire surface of the 500 nm thick Ni substrate even at 700 $^{\circ}C$, although CH$_4$ and Ar/H$_2$ gas were supplied under plasma of 600 W for 1 second. The Raman spectrum showed typical graphene features with D, G, and 2D peaks at 1356, 1584, and 2710 cm$^{-1}$, respectively. With increase of growth temperature to 900 $^{\circ}C$, the ratios of the D band intensity to the G band intensity and the 2D band intensity to the G band intensity were increased and decreased, respectively. The results were strongly correlated to a rougher and coarser Ni surface due to the enhanced recrystallization process at higher temperatures. In contrast, highquality graphene was synthesized at 1000 $^{\circ}C$ on smooth and large Ni grains, which were formed by decreasing Ni deposition thickness to 300 nm.

폴리디메틸실록산(PDMS)을 이용한 그래핀 전사법 개선을 위한 계면처리 연구 (Improvement of PDMS graphene transfer method through surface modification of target substrate)

  • 한재형;최무한
    • 한국응용과학기술학회지
    • /
    • 제32권2호
    • /
    • pp.232-239
    • /
    • 2015
  • 화학기상증착법(CVD)을 이용하여 Cu-foil 위에 합성된 대면적의 단층 그래핀(Graphene)을 폴리머 탄성융합체 PDMS(Polydimethylsiloxane)를 이용하여 건식으로 전사하는 기술을 연구하였다. 이때, $UV/O_3$처리를 통해 목표 기판(target substrate)의 표면 개질을 변화시켜 그래핀의 손상이 최소화되로록 그래핀을 전사하였다. 이 과정을 반복 실행하여 그래핀을 다층(1~4 layers)으로 $SiO_2/Si$기판 위에 적층하였으며, 전사된 다층 그래핀의 품질평가를 위하여 광투과율과 면저항의 변화를 측정하였다.

Effect of Graphene on Growth of Neuroblastoma Cells

  • Park, Hye-Bin;Nam, Hyo-Geun;Oh, Hong-Gi;Kim, Jung-Hyun;Kim, Chang-Man;Song, Kwang-Soup;Jhee, Kwang-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권2호
    • /
    • pp.274-277
    • /
    • 2013
  • The unique properties of graphene have earned much interest in the fields of materials science and condensedmatter physics in recent years. However, the biological applications of graphene remain largely unexplored. In this study, we investigate the cell culture conditions, which are exposed to graphene onto glass and $SiO_2$/Si using human nerve cell line, SH-SY5Y. Cell viability was 84% when cultured on glass and $SiO_2$/Si coated with graphene as compared to culturing on polystyrene surface. Fluorescence data showed that the presence of graphene did not influence cell morphology. These findings suggest that graphene may be used for biological applications.

화학적으로 합성된 그래핀 나노시트 위에서의 이산화주석 나노구조물의 성장 (Growth of Tin Dioxide Nanostructures on Chemically Synthesized Graphene Nanosheets)

  • 김종일;김기출
    • 한국산학기술학회논문지
    • /
    • 제20권5호
    • /
    • pp.81-86
    • /
    • 2019
  • 금속산화물/그래핀 복합체는 고감도 가스센서 및 고용량의 이차전지와 같은 첨단 응용 분야에 활용될 수 있는 유망한 기능성 소재로 알려져 있다. 본 연구에서는 이산화주석($SnO_2$) 나노구조물을 두 영역 전기로 장치를 이용하여 화학적으로 합성된 그래핀 나노시트 위에 성장시켰다. 대면적의 그래핀 나노시트는 Cu foil 위에 열화학기상증착 장비를 이용하여 메탄가스와 수소가스로 합성하였다. 화학적으로 합성된 그래핀 나노시트는 PMMA를 이용하여 세척된 Si 기판위에 전사시켰고, $SnO_2$ 나노구조물은 그래핀 나노시트 위에 $424^{\circ}C$, 3.1 Torr 조건에서 3시간동안 성장시켰다. 합성된 그래핀의 품질과 성장된 $SnO_2$ 나노구조물의 결정학적 특성을 Raman 분광학으로 확인하였다. 그래핀 위에서 성장된 $SnO_2$ 나노구조물의 표면형상은 전계방출 주사전자현미경으로 조사하였다. 그 결과 합성된 그래핀 나노시트는 이중층 그래핀이었고, 그래핀 위에서 성장된 산화주석은 $SnO_2$ 상을 가지고 있었다. 그래핀 위에서 성장된 $SnO_2$ 나노구조물은 복잡한 표면형상을 나타내었는데, 이것은 Si 기판 위에서 성장된 $SnO_2$ 나노구조물이 nano-dots 형태인 것과 비교된다. 그래핀 위에서 성장된 $SnO_2$ 나노구조물이 복잡한 형상을 갖는 것은 그래핀 표면의 기능기의 영향인 것으로 판단된다.