• 제목/요약/키워드: Graphene Technology

검색결과 584건 처리시간 0.029초

코발트와 니켈이 스퍼터링된 구리 포일에서 어닐링 시간에 따른 그래핀 성장 (Graphene Growth on the Cobalt and Nickel Sputtered Cu foil Depending on the Annealing Time)

  • 오예찬;이우진;김상호
    • 한국표면공학회지
    • /
    • 제54권3호
    • /
    • pp.124-132
    • /
    • 2021
  • Graphene which grown on the cobalt or nickel sputtered copper foil depending on the annealing time was studied. Graphene on the copper foil grown by chemical vapor deposition was compared to those on cobalt or nickel sputtered copper foil by using a RF (Radio Frequency) magnetron sputtering at room temperature. FLG(few-layer graphene) was identified independent of substrates by Raman and X-Ray Photoelectron Spectroscopy analyses. On copper foil, size and area fraction of the graphene growth increased until 30 minutes annealing and then didn't changed. Comparing to that, graphene on the cobalt refined till 50 minutes annealing, after then the effect disappeared which means a similar shape to that on copper foil. On nickel the graphene refined irrespective of annealing time that is possibly because of the complete solid solution of nickel with copper.

Transmission Electron Microscopy Specimen Preparation for Layer-area Graphene by a Direct Transfer Method

  • Cho, Youngji;Yang, Jun-Mo;Lam, Do Van;Lee, Seung-Mo;Kim, Jae-Hyun;Han, Kwan-Young;Chang, Jiho
    • Applied Microscopy
    • /
    • 제44권4호
    • /
    • pp.133-137
    • /
    • 2014
  • We suggest a facile transmission electron microscopy (TEM) specimen preparation method for the direct (polymer-free) transfer of layer-area graphene from Cu substrates to a TEM grid. The standard (polymer-based) method and direct transfer method were by TEM, high-resolution TEM, and energy dispersive X-ray spectroscopy (EDS). The folds and crystalline particles were formed in a graphene specimen by the standard method, while the graphene specimen by the direct method with a new etchant solution exhibited clean and full coverage of the graphene surface, which reduced several wet chemical steps and accompanying mechanical stresses and avoided formation of the oxide metal.

Characterization of chemical vapor deposition-grown graphene films with various etchants

  • Choi, Hong-Kyw;Kim, Jong-Yun;Jeong, Hu-Young;Choi, Choon-Gi;Choi, Sung-Yool
    • Carbon letters
    • /
    • 제13권1호
    • /
    • pp.44-47
    • /
    • 2012
  • We analyzed the effect of etchants for metal catalysts in terms of the characteristics of resulting graphene films, such as sheet resistance, hall mobility, transmittance, and carrier concentration. We found the residue of $FeCl_3$ etchant degraded the sheet resistance and mobility of graphene films. The residue was identified as an iron oxide containing a small amount of Cl through elemental analysis using X-ray photoelectron spectroscopy. To remove this residue, we provide an alternative etching solution by introducing acidic etching solutions and their combinations ($HNO_3$, HCl, $FeCl_3$ + HCl, and $FeCl_3+HNO_3$). The combination of $FeCl_3$ and acidic solutions (HCl and $HNO_3$) resulted in more enhanced electrical properties than pure etchants, which is attributed to the elimination of left over etching residue, and a small amount of amorphous carbon debris after the etching process.

CVD공정으로 제작된 멀티레이어 그래핀의 압저항 효과를 이용한 직접화된 압력센서 개발 (Development of Integration Pressure Sensor Using Piezoresistive Effect of Chemical Vapor Deposition (CVD) Produced Multilayer Graphene)

  • 임대윤;하태원;이칠형
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.470-474
    • /
    • 2023
  • In this study, a diaphragm-type pressure sensor was developed using multi-layer(four-layer) graphene produced at 1 nm thickness by thermally transferring single-layer graphene produced by chemical vapor deposition (CVD) to a 6" silicon wafer. By measuring the gauge factor, we investigated whether it was possible to produce a pressure sensor of consistent quality. As a result of the measurement, the pressure sensor using multilayer graphene showed linearity and had a gauge factor of about 17.5. The gauge factor of the multilayer graphene-based pressure sensor produced through this study is lower than that of doped silicon, but is more sensitive than a general metal sensor, showing that it can be sufficiently used as a commercialized sensor.

그래핀이 코팅된 스테인리스강의 고분자전해질 연료전지 분리판 적용을 위한 표면 특성 (Surface Characteristic of Graphene Coated Stainless Steel for PEMFC Bipolar Plate)

  • 이수형;김정수;강남현;조형호;남대근
    • 한국표면공학회지
    • /
    • 제44권5호
    • /
    • pp.226-231
    • /
    • 2011
  • Graphene was coated on STS 316L by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite (graphene) was made of the graphite by chemical treatment. Graphene is distributed using dispersing agent, and STS 316L was coated with diffuse graphene solution by electro spray coating method. The structure of the exfoliated graphite was analyzed using XRD and the coating layer of surface was analyzed by using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed into fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3~5 ${\mu}m$ thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the PEM fuel cell stack inside. And interfacial contact resistance test was measured to simulate the internal operating conditions of PEM fuel cell stack. The results of measurements show that stainless steel coated with graphene was improved in corrosion resistance and surface contact resistance than stainless steel without graphene coating layer.

Graphene formation on 3C-SiC ultrathin film on Si substrates

  • Miyamoto, Yu;Handa, Hiroyuki;Fukidome, Hirokazu;Suemitsu, Maki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.9-10
    • /
    • 2010
  • Since the discovery of graphene by mechanical exfoliation from graphite[1], various fabrication methods are available today such as chemical exfoliation, epitaxial graphene on SiC substrates, etc. In view of industrialization, the mechanical exfoliation method may not be an option. Epitaxial graphene on SiC substrates, in this respect, is by far more practical because the method consists of conventional thermal treatments familiar to semiconductor industry. Still, the use of the SiC substrate itself, and hence the incompatibility with the Si technology, lessens the importance of this technology in its future industrialization. In this context, we have tackled the problem of forming graphene on Si substrates (GOS). Our strategy is to form an ultrathin (~80 nm) SiC layer on top of a Si substrate, and to graphitize the top SiC layers by a vacuum annealing. We have actually succeeded in forming the GOS structure [2,3,4]. Raman-scattering microscopy indicates presence of few-layer graphene (FLG) formed on our annealed SiC/Si heterostructure, with the G ($1580\;cm^{-1}$) and the G'($2700\;cm^{-1}$) bands, both related to ideal graphene, clearly observed. Presence of the D ($1350\;cm^{-1}$) band indicates presence of defects in our GOS films, whose elimination remains as a challenge in the future. To obtain qualified graphene films on Si substrate, formation of qualified SiC films is crucial in the first place, and is achieved by tuning the growth parameters into a process window[5]. With a potential for forming graphene films on large-scale Si wafers, GOS is a powerful candidate as a key technology in bringing graphene into silicon technology.

  • PDF

Graphene Coated Optical Fiber SPR Biosensor

  • Kim, Jang Ah;Hwang, Taehyun;Dugasani, Sreekantha Reddy;Kulkarni, Atul;Park, Sung Ha;Kim, Taesung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.401-401
    • /
    • 2014
  • In this study, graphene, the most attractive material today, has been applied to the wavelength-modulated surface plasmon resonance (SPR) sensor. The optical fiber sensor technology is the most fascinating topic because of its several benefits. In addition to this, the SPR phenomenon enables the detection of biomaterials to be label-free, highly sensitive, and accurate. Therefore, the optical fiber SPR sensor has powerful advantages to detect biomaterials. Meanwhile, Graphene shows superior mechanical, electrical, and optical characteristics, so that it has tremendous potential to be applied to any applications. Especially, grapheme has tighter confinement plasmon and relatively long propagation distances, so that it can enhance the light-matter interactions (F. H. L. Koppens, et al., Nano Lett., 2011). Accordingly, we coated graphene on the optical fiber probe which we fabricated to compose the wavelength-modulated SPR sensor (Figure 1.). The graphene film was synthesized via thermal chemical vapor deposition (CVD) process. Synthesized graphene was transferred on the core exposed region of fiber optic by lift-off method. Detected analytes were biotinylated double cross-over DNA structure (DXB) and Streptavidin (SA) as the ligand-receptor binding model. The preliminary results showed the SPR signal shifts for the DXB and SA binding rather than the concentration change.

  • PDF

Graphene synthesis by chemical vapor deposition on Cu foil

  • Kim, Sung-Jin;Yoo, Kwon-Jae;Seo, E.K.;Boo, Doo-Wan;Hwang, Chan-Yong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.351-351
    • /
    • 2011
  • Graphene has drawn great interests because of its distinctive band structure and physical properties[1]. A few of the practical applications envisioned for graphene include semiconductor applications, optoelectronics (sola cell, touch screens, liquid crystal displays), and graphene based batteries/super-capacitors [2-3]. Recent work has shown that excellent electronic properties are exhibited by large-scale ultrathin graphite films, grown by chemical vapor deposition on a polycrystalline metal and transferred to a device-compatible surface[4]. In this paper, we focussed our scope for the understanding the graphene growth at different conditions, which enables to control the growth towards the application aimed. The graphene was grown using chemical vapor deposition (CVD) with methane and hydrogen gas in vacuum furnace system. The grown graphene was characterized using a scanning electron microscope(SEM) and Raman spectroscopy. We changed the growth temperature from 900 to $1050^{\circ}C$ with various gas flow rate and composition rate. The growth condition for larger domain will be discussed.

  • PDF

빛에 의해 변조되는 금속-그래핀 컨택이 그래핀 포토디텍터의 광응답도에 미치는 영향 (Effects of Optically-modulated Metal-graphene Contact on the Photoresponsivity of Graphene Photodetectors)

  • 이창주;심재훈;박홍식
    • 센서학회지
    • /
    • 제28권2호
    • /
    • pp.117-120
    • /
    • 2019
  • Graphene is recognized as a promising material for silicon photonics, since it has a wide optical-window that entirely covers the optical communication wavelength region ($1.3{\sim}1.6-{\mu}m$) and extremely high-carrier mobility that makes it possible to fabricate the high-speed photodetectors. However, the maximum absorbance of monolayer graphene is only 2.3%, which limits the photoresponse characteristics of graphene photodetectors. As a result, a low photoresponsivity of graphene photodetector is a critical issue limiting the use of graphene photodetectors in the optical communications field. In this paper, we investigated effects of optically-modulated metal-graphene contact on the photoresponsivity of graphene photodetectors. The optical modulation of the contact resistance mainly determined the photoresponse characteristics of graphene photodetectors. The Ni-contact graphene photodetector which has a characteristic of the significant optical modulation of metal-graphene contact showed a higher photoresponsivity than the Pd-contact device. This work will provide a way to improve the photoresponse characteristics of graphene-based photodetector and contribute to the development of high-speed/high-responsivity graphene photodetector.

Growth of Graphene on Electro-polished Copper Foil by Thermal CVD

  • Jin, Xiaozhan;Kim, Sung-Jin;Seo, Eun-Kyoung;Boo, Doo-Wan;Lee, Jung-Ah;Hwang, Chan-Yong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.410-410
    • /
    • 2012
  • The continuous monolayer graphene was synthesized on electro-polished copper foil. Electro-polishing sticks off the coating layer of copper foil, which prevents the continuous graphene growth. The quality of continuous graphene is dependent on roughness of copper foil. Copper foil roughness could be controlled by changing polishing condition. The effects of working voltage (4-6 V) and time (30-70 sec) for electro-polishing were systematically examined. The change of surface roughness was checked with AFM.

  • PDF