• 제목/요약/키워드: Graphen

검색결과 12건 처리시간 0.029초

Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories

  • Javani, Rasool;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • 제31권4호
    • /
    • pp.419-426
    • /
    • 2019
  • In this paper, buckling analyses of composite plate reinforced by Graphen platelate (GPL) is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nano composite plate. The nano composite plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing nonlinear strains-displacements, stress-strain, the energy equations of plate are obtained and using Hamilton's principal, the governing equations are derived. The governing equations are solved based on Navier method. The effect of GPL volume percent, geometrical parameters of plate and elastic foundation on the buckling load are investigated. Results showed that with increasing GPLs volume percent, the buckling load increases.

A Reconfigurable Multilayer Substrate Antenna for Aerospace Applications

  • amine, Ksiksi Mohamed;azizi, Mohamed karim;Gharsallah, Ali
    • International Journal of Computer Science & Network Security
    • /
    • 제21권9호
    • /
    • pp.358-361
    • /
    • 2021
  • In this paper, we have simulated a rectangular microstrip patch antenna for aerospace applications based on graphen as a conductor and a multilayer substrate .as a result of the use of the graphen patch we obtained a reconfigurable antenna on the frequency range (0.6-0.7 terahertz) with a gain up to 12 db. The simulation of this antenna has been performed by using CST Microwave Studio, which is a commercially available finite integral based electromagnetic simulator.

전기화학 증착법을 이용한 그래핀 개질 Indium Tin Oxide 전극 제작 및 효소 전극에 응용 (Fabrication of Graphene-modified Indium Tin Oxide Electrode Using Electrochemical Deposition Method and Its Application to Enzyme Electrode)

  • 왕설;시키;김창준
    • Korean Chemical Engineering Research
    • /
    • 제60권1호
    • /
    • pp.62-69
    • /
    • 2022
  • 그래핀은 부피에 비해 표면적이 넓고 뛰어난 기계적 물성과 전기전도성을 가지며 생체적합성이 우수하다. 본 연구에서는 전기화학적 방법을 이용하여 indium tin oxide (ITO) 글래스 슬라이드 표면에 산화그래핀을 증착·환원시킨 전극을 제작하였고 그래핀으로 표면 개질된 ITO의 전기화학적 특성을 조사하였다. 산화그래핀의 증착과 환원에 순환전압전류법을 사용하였다. 주사전자현미경과 에너지 분산형 X-선 분광법을 사용하여 그래핀이 코팅된 ITO 표면을 관찰하였다. 순환전압전류법과 전기화학 임피던스 분광법을 사용하여 제작된 전극들의 전기화학 특성을 평가하였다. 사이클 수와 주사 속도는 산화그래핀 증착과 환원도에 상당한 영향을 미쳤으며 제작된 전극의 전기화학 특성도 달랐다. ITO 전극에 비하여 그래핀으로 표면 개질된 ITO는 전극 계면에서의 전하 전달 저항이 낮았고 더 많은 전류를 생산하였다. 그래핀으로 표면 개질된 ITO 표면에 고정화된 포도당 산화효소는 포도당을 산화시키며 성공적으로 전자들을 생성하였다.

Si Nanostructure on Graphene

  • Han, Yong;Kim, Heeseob;Hwang, Chan-Cuk;Lee, Hangil;Kim, Bongsoo;Kim, Ki-jeong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.184.1-184.1
    • /
    • 2014
  • Nanostructures on Graphene surface receive highly attraction for many applications ranging from sensing technologies to molecular electronics. Recently J. Jasuja et al. reported the electrical property tailoring and Raman enhancement by the implantation and growth of dendritic gold nanostructures on graphene derivatives [ACSNANO, 3, 2358, 2013] Here, we introduced Si vapor on the graphen to induce the nanostructure. The surface property change of graphene by controlling the amount of Si and the thickness of graphene were investigated using high resolution photoemission spectroscopy (HRPES), and atomic force microscopy (AFM). The Si nanostructures on graphene show the thickness dependency of graphene, and the size of Si nano-structure reached to 7 nm and 15 nm on the mono and the multilayered graphene after $30{\AA}$ Si evaporation.

  • PDF

나노입자의 구조와 모양, 담지체 및 하이브리드 시스템 제어를 통한 직접메탄올 연료전지의 촉매 개발 (Catalyst Enhanced by Controlling Structure and Shape of Nanocrystals, Support Materials, and Hybrid System in DMFCs)

  • 이영욱;신태호
    • 세라미스트
    • /
    • 제22권2호
    • /
    • pp.189-197
    • /
    • 2019
  • Direct methanol fuel cells (DMFCs) have found a wide variety of commercial applications such as portable computer and mobile phone. In a fuel cell, the catalysts have an important role and durability and efficiency are determined by the ability of the catalyst. The activity of the catalyst is determined by the structure and shape control of the nanoparticles and the dispersion of the nanoparticles and application system. The surface energy of nanoparticles determines the activity by shape control and the nanostructure is determined by the ratio of bi- and tri-metals in the alloy and core-shell. The dispersion of nanoparticles depends on the type of support such as carbon, graphen and metal oxide. In addition, a hybrid system using both optical and electrochemical device has been developed recently.

Analytical solution of buckling problem in plates reinforced by Graphene platelet based on third order shear deformation theory

  • Zhou, Linyun;Najjari, Yasaman
    • Steel and Composite Structures
    • /
    • 제43권6호
    • /
    • pp.725-734
    • /
    • 2022
  • In this paper, buckling analyses of nanocomposite plate reinforced by Graphen platelet (GPL) is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nanocomposite plate. The nanocomposite plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing relations of strains-displacements and stress-strain, the energy equations of the plate are obtained and using Hamilton's principle, the governing equations are derived. The governing equations are solved based on analytical solution. The effect of GPL volume percent, geometrical parameters of plate and elastic foundation on the buckling load are investigated. Results show that with increasing GPLs volume percent, the buckling load increases. In addition, elastic medium can enhance the values of buckling load significantly.

Photovoltaic Efficiencies on Dye-Sensitized Solar Cells Assembled with Graphene-Linked TiO2 Anode Films

  • Kim, A-Young;Kim, Ji-Eun;Kim, Min-Young;Ha, Seung-Won;Tien, Ngyen Thi Thuy;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3355-3360
    • /
    • 2012
  • To promote the photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs), graphene is introduced as a working electrode with $TiO_2$ in this study, because it has great transparency and very good conductivity. XRD patterns indicate the presence of graphene and $TiO_2$ particles in graphene-linked $TiO_2$ samples. Moreover, TEM pictures also show that the nano-sized $TiO_2$ particles are highly dispersed and well-linked onto the thin layered graphene. On the basis of the UV-visible spectra, the band gaps of $TiO_2$, 1.0 wt % graphene-$TiO_2$, 5.0 wt % graphene-$TiO_2$, and 10.0 wt % graphene-$TiO_2$ are 3.16, 2.94, 2.25, and 2.11 eV, respectively. Compared to pure $TiO_2$, the energy conversion efficiency was enhanced considerably by the application of graphene-linked $TiO_2$ anode films in the DSSCs to approximately 6.05% for 0.1 wt % graphene-$TiO_2$ with N719 dye (10.0 mm film thickness and $5.0mm{\times}5.0mm$ cell area) under $100mW/cm^2$ of simulated sunlight. The quantum efficiency was the highest when 1.0 wt % of graphene was used. In impedance curves, the resistance was smallest for 1.0 wt % graphene-$TiO_2$-DSSC.

산화그래핀 첨가에 따른 에폭시 나노 복합재료의 열적 및 기계적 특성 연구 (Study on Thermal and Mechanical Properties of Epoxy Resin Nanocomposites with the Graphene Oxide)

  • 심지현;유성훈;이종혁;김근수;천진성;박성민
    • 한국염색가공학회지
    • /
    • 제30권2호
    • /
    • pp.98-106
    • /
    • 2018
  • In this study, graphene oxide(GO) was synthesized by using Hummer's method. Then, GO was used as a additive for epoxy resin nanocomposites that were prepared by mixing Tetraglycidyl diamino diphenyl methane(TGDDM) and hardner(MDEA+M-MIPA). Thermal and mechanical properties of epoxy resin nanocomposites were confirmed by analytical methods such as TG-DTA, DMA, fracture toughness, tensile strength, and flexural strength. The fracture surfaces of epoxy resin nanocomposites with different content of the GO were observed by a Scanning Electron Microscope(SEM). The mechanism for mechanical properties of epoxy resin nanocomposites was analyzed by modeling of nanocomposites with different GO weight. Due to the GO, both the heat resistance and the glass transition temperature of the epoxy resin nanocomposites were improved. Interestingly, when 0.1wt.% of GO was added to the epoxy resin/hardner mixture, the properties of mechanical increased compared with the neat epoxy resin. This results were caused by an aggregation between the GO.

Free vibration of sandwich micro-beam with porous foam core, GPL layers and piezo-magneto-electric facesheets via NSGT

  • Mohammadimehr, Mehdi;Firouzeh, Saeed;Pahlavanzadeh, Mahsa;Heidari, Yaser;Irani-Rahaghi, Mohsen
    • Computers and Concrete
    • /
    • 제26권1호
    • /
    • pp.75-94
    • /
    • 2020
  • The aim of this research is to investigate free vibration of a novel five layer Timoshenko microbeam which consists of a transversely flexible porous core made of Al-foam, two graphen platelets (GPL) nanocomposite reinforced layers to enhance the mechanical behavior of the structure as well as two piezo-magneto-electric face sheets layers. This microbeam is subjected to a thermal load and resting on Pasternak's foundation. To accomplish the analysis, constitutive equations of each layer are derived by means of nonlocal strain gradient theory (NSGT) to capture size dependent effects. Then, the Hamilton's principle is employed to obtain the equations of motion for five layer Timoshenko microbeam. They are subsequently solved analytically by applying Navier's method so that discretized governing equations are determined in form of dynamic matrix giving the possibility to gain the natural frequencies of the Timoshenko microbeam. Eventually, after a validation study, the numerical results are presented to study and discuss the influences of various parameters such as nonlocal parameter, strain gradient parameter, aspect ratio, porosity, various volume fraction and distributions of graphene platelets, temperature change and elastic foundation coefficients on natural frequencies of the sandwich microbeam.

산화그래핀이 폴리우레탄 폼 기계적 강도에 미치는 영향 (Effect of graphene oxide on mechanical characteristics of polyurethane foam)

  • 김종민;김정현;최영락;박성균;박강현;이제명
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권6호
    • /
    • pp.493-498
    • /
    • 2016
  • 본 연구에서는 영하 $163^{\circ}C$의 극저온 환경에서 저장되는 액화천연가스 운반선 방열시스템에 적용되는 폴리우레탄 폼 단열재의 기계적 강도를 향상시키기 위한 연구의 일환으로 폴리우레탄 폼 합성 시 산화그래핀을 첨가한 산화그래핀-폴리우레탄폼을 개발하였다. 우선 Hummers 방법을 이용하여 산화그래핀을 합성하였으며, 폴리올과 이소시아네이트의 중합반응 시 산화그래핀의 중량비를 다르게 첨가하여 산화그래핀-폴리우레탄 폼 벌크를 제작하였다. 미세구조 분석을 통해 산화그래핀의 양에 의존한 산화그래핀-폴리우레탄 폼의 셀 안정성에 대해 분석 하였으며, 이와 동시에 산화그래핀이 폴리우레탄 폼 셀에 미치는 영향에 대해 분석하고자 하였다. 또한, 기계적 강도를 계측하기 위해 극저온용 챔버를 탑재한 만능재료시험기의 온도를 제어하여 상온 및 영하 $163^{\circ}C$의 극저온 환경에서 압축시험을 수행하여 기계적 거동 및 파손 특성에 대해 규명하였다. 시험 결과 산화그래핀의 양이 증가 할수록 기계적 강도는 향상되지만, 일정량 이상이 되면 셀형성을 방해하여 셀 구조의 안정성이 저하되고 기계적 강도 또한 저하되는 현상을 관찰하였다.