DOI QR코드

DOI QR Code

Catalyst Enhanced by Controlling Structure and Shape of Nanocrystals, Support Materials, and Hybrid System in DMFCs

나노입자의 구조와 모양, 담지체 및 하이브리드 시스템 제어를 통한 직접메탄올 연료전지의 촉매 개발

  • Lee, Young Wook (Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Tae Ho (Korea Institute of Ceramic Engineering and Technology)
  • Received : 2019.06.16
  • Accepted : 2019.06.24
  • Published : 2019.06.30

Abstract

Direct methanol fuel cells (DMFCs) have found a wide variety of commercial applications such as portable computer and mobile phone. In a fuel cell, the catalysts have an important role and durability and efficiency are determined by the ability of the catalyst. The activity of the catalyst is determined by the structure and shape control of the nanoparticles and the dispersion of the nanoparticles and application system. The surface energy of nanoparticles determines the activity by shape control and the nanostructure is determined by the ratio of bi- and tri-metals in the alloy and core-shell. The dispersion of nanoparticles depends on the type of support such as carbon, graphen and metal oxide. In addition, a hybrid system using both optical and electrochemical device has been developed recently.

Keywords

References

  1. W. Huang, H. Wang, J. Zhou, J. Wang, P.N. Duchesne, D. Muir, P. Zhang, N. Han, F. Zhao, M. Zeng, J. Zhong, C. Jin, Y. Li, S.-T. Lee, H. Dai, "Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinumnickel hydroxideegrapheme,", Nat. Commun. 610035 (2015).
  2. J. Xie, Q. Zhang, L. Gu, S. Xu, P. Wang, J. Liu, Y. Ding, Y.F. Yao, C. Nan, M. Zhao,Y. You, Z. Zou, "Ruthenium-platinum core-shell nanocatalysts with substantially enhanced activity and durability towards methanol oxidation," Nanomater. Energy 21 247-257 (2016).
  3. B. Kakade, I. Patil, M. Lokanathan, A. Swami, "Enhanced methanol electrooxidation at Pt skin@ PdPt nanocrystals," J. Mater. Chem. A3 17771-17779 (2015).
  4. W. Hong, C. Shang, J. Wang, E. Wang, "Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation," Energy Environ. Sci. 8 2910-2915(2015). https://doi.org/10.1039/C5EE01988E
  5. Y.-C. Shi, L.-P. Mei, A.-J. Wang, T. Yuan, S.-S. Chen, J.-J. Feng, "l-Glutamic acidassisted ecofriendly one-pot synthesis of sheet-assembled platinum-palladiumalloy networks for methanol oxidation and oxygen reduction reactions," J. Colloid Interface Sci. 504 363-370 (2017). https://doi.org/10.1016/j.jcis.2017.05.058
  6. N. Jung, D. Y. Chung, J. Ryu, S. J. Yoo, Y. -E. Sung, "Pt-based Nanoarchitecture and Catalyst Design for Fuel Cell Applications," Nano Today 9 433-456 (2014). https://doi.org/10.1016/j.nantod.2014.06.006
  7. Y. Liu, M. Chi, V. Mazumder, K. L. More, K. Soled, S.; Henao, J. D.; Sun, S. "Composition-Controlled Synthesis of Bimetallic PdPt Nanoparticles and Their Electro-oxidation of Methanol," Chem. Mater. 23 4199-4203 (2011). https://doi.org/10.1021/cm2014785
  8. Y. Xia, Y. Xiong, B. Lim, S. Skrabalak, E. "Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? "Angew. Chem., Int. Ed. 48 60-103 (2009). https://doi.org/10.1002/anie.200802248
  9. Z. Peng, H. Yang, "Designer Platinum Nanoparticles: Control of Shape, Composition in Alloy, Nanostructure and Electrocatalytic Property" Nano Today 4, 143-164 (2009). https://doi.org/10.1016/j.nantod.2008.10.010
  10. J. W. Hong, S. W. Kang, B-S. Choi, D. Kim, S. B. Lee, Han, S. W. "Controlled Synthesis of Pd-Pt Alloy Hollow Nanostructures with Enhanced Catalytic Activities for Oxygen Reduction," ACS Nano 6 2410-2419 (2012). https://doi.org/10.1021/nn2046828
  11. J. W. Hong, Y. Kim, Y. Kwon, S. W. Han, S. W. "Noble-Metal Nanocrystals with Controlled Facets for Electrocatalysis." Chem.-Asian J. 11, 2224-2239 (2016). https://doi.org/10.1002/asia.201600462
  12. C. Li, T. Sato, Y. Yamauchi, "Electrochemical Synthesis of One-Dimensional Mesoporous Pt Nanorods Using the Assembly of Surfactant Micelles in Confined Space," Angew. Chem., Int. Ed. 52 8050-8053 (2013). https://doi.org/10.1002/anie.201303035
  13. Y. Kim, Y. W. Lee, M. Kim, S. W. Han, "One-Pot Synthesis and Electrocatalytic Properties of Pd@Pt Core- Shell Nanocrystals with Tailored Morphologies," Chem. - Eur. J. 20 7901-7905(2014). https://doi.org/10.1002/chem.201402185
  14. J. Zhang, K. Li, B. Zhang, "Synthesis of Dendritic Pt-Ni-P Alloy Nanoparticles with Enhanced Electrocatalytic Properties," Chem. Commun. 51, 12012-12015 (2015). https://doi.org/10.1039/c5cc04277a
  15. C. Li, Y. Yamauchi, Facile Solution Synthesis of Ag@ Pt Core-Shell Nanoparticles with Dendritic Pt Shells. Phys. Chem. Chem. Phys. 15 3490-3496 (2013). https://doi.org/10.1039/c3cp44313b
  16. M. Gong, G. Fu, Y. Chen, Y. Tang, T. Lu, "Autocatalysis and Selective Oxidative Etching Induced Synthesis of Platinum-Copper Bimetallic Alloy Nanodendrites Electrocatalysts," ACS Appl. Mater. Interfaces 6 7301-7308 (2014). https://doi.org/10.1021/am500656j
  17. Z. Hang, Y. Yang, F. Nosheen, P. Wang, J. Zhang, J. Zhuang, X. Wang, "Synthesis of Dendritic Pt-Ni-P Alloy Nanoparticles with Enhanced Electrocatalytic Properties," Small 9 3063-3069 (2013). https://doi.org/10.1002/smll.201203200
  18. Y. W. Lee, M. Kim, S. W. Han,"Shaping Pd nanocatalysts through the control of reaction sequence,"Chem.Commun. 46 1535-1537 (2010). https://doi.org/10.1039/b920523c
  19. Y. W. Lee, M. A. Lim, M. S. W. Kang, S. I. Park, S. W. Han, "Facile Synthesis of Noble Metal Nanotubes by Using ZnO Nanowires as Sacrificial Scaffolds and Their Electrocatalytic Properties."Chem. Commun. 47 6299-6301 (2011). https://doi.org/10.1039/c0cc05701k
  20. K. Vinodgopal, J. Peller, O. Makogon, & P. V. Kamat, (1998). "Ultrasonic mineralization of a reactive textile azo dye, remazol black B. Water research," J. Phys. Chem. 32, 3646-3650.
  21. H. A. Gasteiger, N. Markovic, Jr. P. N. Ross & E. J. Cairns, "Methanol electrooxidation on wellcharacterized platinum-ruthenium bulk alloys." J. Phys. Chem, 97, 12020-12029 (1993). https://doi.org/10.1021/j100148a030
  22. J. W. Hong, D. Kim, Y. W. Lee, M. Kim, S. W. Kang, S. W. Han, S "Atomic-distribution-dependent electrocatalytic activity of Au-Pd bimetallic nanocrystals," Angew. Chem. Int. Ed. 50 8876-8880 (2011). https://doi.org/10.1002/anie.201102578
  23. Y. W.Lee, M. Kim, Y. Kim, S. W. Kang, J. H. Lee, S. W. Han, S. W. "Synthesis and electrocatalytic activity of Au- Pd alloy nanodendrites for ethanol oxidation," J. Phys. Chem. C 114 7689-7693 (2010). https://doi.org/10.1021/jp9119588
  24. Y. W.Lee, M. Kim, S. W. Kang, S. W. Han, "Polyhedral bimetallic alloy nanocrystals exclusively bound by {110} facets: Au-Pd rhombic dodecahedra," Angew. Chem. Int. Ed. 50 3466-3470 (2011) https://doi.org/10.1002/anie.201007220
  25. Y. W. Lee, D. Kim, J. W. Hong, S. W. Kang, S. B. Lee,S. W. Han, "Kinetically Controlled Growth of Polyhedral Bimetallic Alloy Nanocrystals Exclusively Bound by High-Index Facets: Au-Pd Hexoctahedra," Small 9 660-665(2013). https://doi.org/10.1002/smll.201201813
  26. T. Maiyalagan,"Pt-Ru nanoparticles supported PAMAM dendrimer functionalized carbon nanofiber composite catalysts and their application to methanol oxidation."J Solid State Electrochem 13 1561-1566 (2009). https://doi.org/10.1007/s10008-008-0730-0
  27. M. Yan, Q. Jiang, T. Zhang, J. Wang, L. Yang, Z. Lu, H. Huang, "Three-dimensional low-defect carbon nanotube/nitrogen-doped graphene hybrid aerogel-supported Pt nanoparticles as efficient electrocatalysts toward the methanol oxidation reaction." J. Mater. Chem. A 6, 18165-18172 (2018). https://doi.org/10.1039/C8TA05124K
  28. K. H. Park, Y. W. Lee, S. W. Kang, S. W. Han, "A Facile One-Pot Synthesis and Enhanced Formic Acid Oxidation of Monodisperse Pd-Cu Nanocatalysts," Chem. Asian. J. 6 1515-1519 (2011). https://doi.org/10.1002/asia.201000808
  29. K. H. Park, Y. W. Lee, Y. Kim, S. W. Kang, S. W. Han, "One-Pot Synthesis of $CeO_2$-Supported Pd-Cu-Alloy Nanocubes with High Catalytic Activity." Chem. Eur. J., 19 8053-8057(2013). https://doi.org/10.1002/chem.201301188
  30. S. Lee, Y. Wy, Y. W. Lee, K. Ham, S. W. Han, "Core-Shell Nanoparticle Clusters Enable Synergistic Integration of Plasmonic and Catalytic Functions in a Single Platform," Small 13 1701633 (2017). https://doi.org/10.1002/smll.201701633
  31. C-T Lin, M-N Chang, H. J. Huang, C-H Chen, R-J Sun, B-H Liao, Y-FC Chau, C-N Hsiao, M-H Shiao, F-G Tseng, "Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation," Electrochim Acta 192 15-21(2016). https://doi.org/10.1016/j.electacta.2016.01.043
  32. H. Yang, L. Q. He, Y. W. Hu, X. Lu, G. R. Li, B. Liu, B. Ren, Y. Tong, P. P. Fang "Quantitative detection of photothermal and photoelectrocatalytic effects Induced by SPR from Au@Pt nanoparticles," Angew Chem Int Ed. 127 11624-11628 (2015). https://doi.org/10.1002/ange.201505985
  33. H. Yang, L-Q. He, Z-H. Wang, Y-Y. Zheng, X. Lu, G-R. Li, P-P. Fang, J. Chen, Y. Tong "Surface plasmon resonance promoted photoelectrocatalyst by visible light from Au core Pd shell Pt cluster nanoparticles," Electrochim Acta 209 591-598(2016). https://doi.org/10.1016/j.electacta.2016.05.120
  34. Q. Wang, W. Zheng, H. Chen, B. Zhang, D. Su, X. Cui, "Plasmonic-induced inhibition and enhancement of the electrocatalytic activity of Pd-Au heteronanoraspberries for ethanol oxidation," J. Power. Sources. 316 29-36(2016). https://doi.org/10.1016/j.jpowsour.2016.03.057
  35. S. Lee, Y. W. Lee, H. Ahn, J. H. Kim, S. W. Han,"Plasmon-enhanced electrocatalysis from synergistic hybrids of noble metal nanocrystals," Curr. Opin. Electrochem. 4 11-17(2017). https://doi.org/10.1016/j.coelec.2017.06.005