• Title/Summary/Keyword: Graphen

Search Result 12, Processing Time 0.023 seconds

Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories

  • Javani, Rasool;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.419-426
    • /
    • 2019
  • In this paper, buckling analyses of composite plate reinforced by Graphen platelate (GPL) is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nano composite plate. The nano composite plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing nonlinear strains-displacements, stress-strain, the energy equations of plate are obtained and using Hamilton's principal, the governing equations are derived. The governing equations are solved based on Navier method. The effect of GPL volume percent, geometrical parameters of plate and elastic foundation on the buckling load are investigated. Results showed that with increasing GPLs volume percent, the buckling load increases.

A Reconfigurable Multilayer Substrate Antenna for Aerospace Applications

  • amine, Ksiksi Mohamed;azizi, Mohamed karim;Gharsallah, Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.358-361
    • /
    • 2021
  • In this paper, we have simulated a rectangular microstrip patch antenna for aerospace applications based on graphen as a conductor and a multilayer substrate .as a result of the use of the graphen patch we obtained a reconfigurable antenna on the frequency range (0.6-0.7 terahertz) with a gain up to 12 db. The simulation of this antenna has been performed by using CST Microwave Studio, which is a commercially available finite integral based electromagnetic simulator.

Fabrication of Graphene-modified Indium Tin Oxide Electrode Using Electrochemical Deposition Method and Its Application to Enzyme Electrode (전기화학 증착법을 이용한 그래핀 개질 Indium Tin Oxide 전극 제작 및 효소 전극에 응용)

  • Wang, Xue;Shi, Ke;Kim, Chang-Joon
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.62-69
    • /
    • 2022
  • Graphene has a large surface area to volume ratio and good mechanical and electrical property and biocompatibility. This study described the electrochemical deposition and reduction of graphene oxide on the surface of indium tin oxide (ITO) glass slide and electrochemical characterization of graphen-modified ITO. Cyclic voltammetry was used for the deposition and reduction of graphene oxide. The surface of graphen-coated ITO was characterized using scanning electron microscopy and energy dispesive X-ray spectroscopy. The electrodes were evaluated by performing cyclic voltammetry and electrochemical impedance spectroscopy. The number of cycles and scan rate greatly influenced on the coverage and the degree of reduction of graphene oxide, thus affecting the electrochemical properties of electrodes. Modification of ITO with graphene generated higher current with lower charge transfer resistance at the electrode-electrolyte interface. Glucose oxidase was immobilized on the graphene-modified ITO and has been found to successfully generate electrons by oxidizing glucose.

Si Nanostructure on Graphene

  • Han, Yong;Kim, Heeseob;Hwang, Chan-Cuk;Lee, Hangil;Kim, Bongsoo;Kim, Ki-jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.184.1-184.1
    • /
    • 2014
  • Nanostructures on Graphene surface receive highly attraction for many applications ranging from sensing technologies to molecular electronics. Recently J. Jasuja et al. reported the electrical property tailoring and Raman enhancement by the implantation and growth of dendritic gold nanostructures on graphene derivatives [ACSNANO, 3, 2358, 2013] Here, we introduced Si vapor on the graphen to induce the nanostructure. The surface property change of graphene by controlling the amount of Si and the thickness of graphene were investigated using high resolution photoemission spectroscopy (HRPES), and atomic force microscopy (AFM). The Si nanostructures on graphene show the thickness dependency of graphene, and the size of Si nano-structure reached to 7 nm and 15 nm on the mono and the multilayered graphene after $30{\AA}$ Si evaporation.

  • PDF

Catalyst Enhanced by Controlling Structure and Shape of Nanocrystals, Support Materials, and Hybrid System in DMFCs (나노입자의 구조와 모양, 담지체 및 하이브리드 시스템 제어를 통한 직접메탄올 연료전지의 촉매 개발)

  • Lee, Young Wook;Shin, Tae Ho
    • Ceramist
    • /
    • v.22 no.2
    • /
    • pp.189-197
    • /
    • 2019
  • Direct methanol fuel cells (DMFCs) have found a wide variety of commercial applications such as portable computer and mobile phone. In a fuel cell, the catalysts have an important role and durability and efficiency are determined by the ability of the catalyst. The activity of the catalyst is determined by the structure and shape control of the nanoparticles and the dispersion of the nanoparticles and application system. The surface energy of nanoparticles determines the activity by shape control and the nanostructure is determined by the ratio of bi- and tri-metals in the alloy and core-shell. The dispersion of nanoparticles depends on the type of support such as carbon, graphen and metal oxide. In addition, a hybrid system using both optical and electrochemical device has been developed recently.

Analytical solution of buckling problem in plates reinforced by Graphene platelet based on third order shear deformation theory

  • Zhou, Linyun;Najjari, Yasaman
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.725-734
    • /
    • 2022
  • In this paper, buckling analyses of nanocomposite plate reinforced by Graphen platelet (GPL) is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nanocomposite plate. The nanocomposite plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing relations of strains-displacements and stress-strain, the energy equations of the plate are obtained and using Hamilton's principle, the governing equations are derived. The governing equations are solved based on analytical solution. The effect of GPL volume percent, geometrical parameters of plate and elastic foundation on the buckling load are investigated. Results show that with increasing GPLs volume percent, the buckling load increases. In addition, elastic medium can enhance the values of buckling load significantly.

Photovoltaic Efficiencies on Dye-Sensitized Solar Cells Assembled with Graphene-Linked TiO2 Anode Films

  • Kim, A-Young;Kim, Ji-Eun;Kim, Min-Young;Ha, Seung-Won;Tien, Ngyen Thi Thuy;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3355-3360
    • /
    • 2012
  • To promote the photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs), graphene is introduced as a working electrode with $TiO_2$ in this study, because it has great transparency and very good conductivity. XRD patterns indicate the presence of graphene and $TiO_2$ particles in graphene-linked $TiO_2$ samples. Moreover, TEM pictures also show that the nano-sized $TiO_2$ particles are highly dispersed and well-linked onto the thin layered graphene. On the basis of the UV-visible spectra, the band gaps of $TiO_2$, 1.0 wt % graphene-$TiO_2$, 5.0 wt % graphene-$TiO_2$, and 10.0 wt % graphene-$TiO_2$ are 3.16, 2.94, 2.25, and 2.11 eV, respectively. Compared to pure $TiO_2$, the energy conversion efficiency was enhanced considerably by the application of graphene-linked $TiO_2$ anode films in the DSSCs to approximately 6.05% for 0.1 wt % graphene-$TiO_2$ with N719 dye (10.0 mm film thickness and $5.0mm{\times}5.0mm$ cell area) under $100mW/cm^2$ of simulated sunlight. The quantum efficiency was the highest when 1.0 wt % of graphene was used. In impedance curves, the resistance was smallest for 1.0 wt % graphene-$TiO_2$-DSSC.

Study on Thermal and Mechanical Properties of Epoxy Resin Nanocomposites with the Graphene Oxide (산화그래핀 첨가에 따른 에폭시 나노 복합재료의 열적 및 기계적 특성 연구)

  • Sim, Ji-hyun;Yu, Seong-hun;Lee, Jong-hyuk;Kim, Gun-soo;Chon, Jin-sung;Park, Sung-min
    • Textile Coloration and Finishing
    • /
    • v.30 no.2
    • /
    • pp.98-106
    • /
    • 2018
  • In this study, graphene oxide(GO) was synthesized by using Hummer's method. Then, GO was used as a additive for epoxy resin nanocomposites that were prepared by mixing Tetraglycidyl diamino diphenyl methane(TGDDM) and hardner(MDEA+M-MIPA). Thermal and mechanical properties of epoxy resin nanocomposites were confirmed by analytical methods such as TG-DTA, DMA, fracture toughness, tensile strength, and flexural strength. The fracture surfaces of epoxy resin nanocomposites with different content of the GO were observed by a Scanning Electron Microscope(SEM). The mechanism for mechanical properties of epoxy resin nanocomposites was analyzed by modeling of nanocomposites with different GO weight. Due to the GO, both the heat resistance and the glass transition temperature of the epoxy resin nanocomposites were improved. Interestingly, when 0.1wt.% of GO was added to the epoxy resin/hardner mixture, the properties of mechanical increased compared with the neat epoxy resin. This results were caused by an aggregation between the GO.

Free vibration of sandwich micro-beam with porous foam core, GPL layers and piezo-magneto-electric facesheets via NSGT

  • Mohammadimehr, Mehdi;Firouzeh, Saeed;Pahlavanzadeh, Mahsa;Heidari, Yaser;Irani-Rahaghi, Mohsen
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.75-94
    • /
    • 2020
  • The aim of this research is to investigate free vibration of a novel five layer Timoshenko microbeam which consists of a transversely flexible porous core made of Al-foam, two graphen platelets (GPL) nanocomposite reinforced layers to enhance the mechanical behavior of the structure as well as two piezo-magneto-electric face sheets layers. This microbeam is subjected to a thermal load and resting on Pasternak's foundation. To accomplish the analysis, constitutive equations of each layer are derived by means of nonlocal strain gradient theory (NSGT) to capture size dependent effects. Then, the Hamilton's principle is employed to obtain the equations of motion for five layer Timoshenko microbeam. They are subsequently solved analytically by applying Navier's method so that discretized governing equations are determined in form of dynamic matrix giving the possibility to gain the natural frequencies of the Timoshenko microbeam. Eventually, after a validation study, the numerical results are presented to study and discuss the influences of various parameters such as nonlocal parameter, strain gradient parameter, aspect ratio, porosity, various volume fraction and distributions of graphene platelets, temperature change and elastic foundation coefficients on natural frequencies of the sandwich microbeam.

Effect of graphene oxide on mechanical characteristics of polyurethane foam (산화그래핀이 폴리우레탄 폼 기계적 강도에 미치는 영향)

  • Kim, Jong-Min;Kim, Jeong-Hyeon;Choe, Young-Rak;Park, Sung Kyun;Park, Kang Hyun;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.493-498
    • /
    • 2016
  • In the present study, graphene oxide based polyurethane foams were manufactured as a part of the development process of mechanically strengthened polyurethane foam insulation material. This material is used in a liquefied natural gas carrier cargo containment system. The temperature of the containment system is $-163^{\circ}C$. First, graphene oxide was synthesized using the Hummers' method, and it was supplemented into polyol-isocyanate reagent by considering a different amount of graphene oxide weight percent. Then, a bulk form of graphene-oxide-polyurethane foam was manufactured. In order to investigate the cell stability of the graphene-oxide-polyurethane foam, its microstructural morphology was observed, and the effect of graphene oxide on microstructure of the polyurethane foam was investigated. In addition, the compressive strength of graphene-oxide-polyurethane foam was measured at ambient and cryogenic temperatures. The cryogenic tests were conducted in a cryogenic chamber equipped with universal testing machine to investigate mechanical and failure characteristics of the graphene-oxide-polyurethane foam. The results revealed that the additions of graphene oxide enhanced the mechanical characteristics of polyurethane foam. However, cell stability and mechanical strength of graphene-oxide-polyurethane foam decreased as the weight percent of graphene oxide was increased.