• 제목/요약/키워드: Graph entropy

Search Result 15, Processing Time 0.021 seconds

Definition of hierarchical attributed random graph and proposal of its applications (계층적 속성 랜덤 그래프의 정의 및 이를 이용한 여러 응용들의 소개)

  • 성동수
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.8
    • /
    • pp.79-87
    • /
    • 1997
  • For the representation of a complex object, the object is decomposed into several parts, and it is described by these decomposed parts and their relations. In genral, the parts can be the primitive elements that can not be decomposed further, or can be decomposed into their subparts. Therefore, the hierarchical description method is very natural and it si represented by a hierarchical attributed graph whose vertieces represent either primitive elements or graphs. This graphs also have verties which contain primitive elements or graphs. When some uncertainty exists in the hierarchical description of a complex object either due to noise or minor deformation, a probabilistic description of the object ensemble is necessary. For this purpose, in this paper, we formally define the hierarchical attributed random graph which is extention of the hierarchical random graph, and erive the equations for the entropy calculation of the hierarchical attributed random graph, and derive the equations for the entropy calculation of the hierarchical attributed random graph. Finally, we propose the application areas to use these concepts.

  • PDF

Comparison of graph clustering methods for analyzing the mathematical subject classification codes

  • Choi, Kwangju;Lee, June-Yub;Kim, Younjin;Lee, Donghwan
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.5
    • /
    • pp.569-578
    • /
    • 2020
  • Various graph clustering methods have been introduced to identify communities in social or biological networks. This paper studies the entropy-based and the Markov chain-based methods in clustering the undirected graph. We examine the performance of two clustering methods with conventional methods based on quality measures of clustering. For the real applications, we collect the mathematical subject classification (MSC) codes of research papers from published mathematical databases and construct the weighted code-to-document matrix for applying graph clustering methods. We pursue to group MSC codes into the same cluster if the corresponding MSC codes appear in many papers simultaneously. We compare the MSC clustering results based on the several assessment measures and conclude that the Markov chain-based method is suitable for clustering the MSC codes.

Statistical Measurement of Monsyllable Entropy for Korean Language (한국어 음절의 Entropy에 관한 연구)

  • 이주근;최흥문
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.11 no.3
    • /
    • pp.15-21
    • /
    • 1974
  • The information amount of monosyllables(characters) in Korean language is measured, in order of the following 3 steps. 1) The basic consonants and vowels are partitioned into two steps, 2) These set symbols, C and V, are sequentially combined to obtain the equation which represent the flow state of monosyllables. 3) From the equation, the state graphs can be constructed to examine the proferties of a stochastic process of monosyllables in Korean language. Furthermore, the entropy of Korean language by statistics is measured and compared with that of the western languages. The proposed methods are more definite, systematic, and simpler than the usual methods in examining the nature of information sources.

  • PDF

Comparison of Objective Functions for Feed-forward Neural Network Classifiers Using Receiver Operating Characteristics Graph

  • Oh, Sang-Hoon;Wakuya, Hiroshi
    • International Journal of Contents
    • /
    • v.10 no.1
    • /
    • pp.23-28
    • /
    • 2014
  • When developing a classifier using various objective functions, it is important to compare the performances of the classifiers. Although there are statistical analyses of objective functions for classifiers, simulation results can provide us with direct comparison results and in this case, a comparison criterion is considerably critical. A Receiver Operating Characteristics (ROC) graph is a simulation technique for comparing classifiers and selecting a better one based on a performance. In this paper, we adopt the ROC graph to compare classifiers trained by mean-squared error, cross-entropy error, classification figure of merit, and the n-th order extension of cross-entropy error functions. After the training of feed-forward neural networks using the CEDAR database, the ROC graphs are plotted to help us identify which objective function is better.

Workspace Visibility Graph Analysis (VGA) for Concentration Privacy and Group Relations in the Open-Plan Office Environment

  • Hong, Yeon-Koo;Yoo, Uoo-Sang
    • Architectural research
    • /
    • v.12 no.1
    • /
    • pp.9-14
    • /
    • 2010
  • The present study explored the applicability of Visibility Graph Analysis (VGA) techniques to workplace design research. Six types of VGA measures in Depthmap encompassing visual connectivity, three types of visual integration, mean depth, and visual entropy were employed for the analysis of individual privacy for task concentration and group relationship behavior in the open-plan office environment. Data comprised 136 workers in 6 open-plan offices filled with low-paneled (1.2-1.5m) cubicle workspaces. For the statistical analysis, Spearman's rho correlations and t-tests were applied for the spatial and behavioral measures. The results showed that workspace VGA measures have a potential to be useful information to account for workers' concentration privacy and, limitedly, also informal relationships with team members. Visual entropy values especially offer reliable information to predict various aspects of office workers' privacy behavior while visual integration can be used to account for the workers' sense of trust in group relations. The study also discussed the limitation of VGA applications to the workplace context.

GUI-based Detection of Usage-state Changes in Mobile Apps (GUI에 기반한 모바일 앱 사용상태 구분)

  • Kang, Ryangkyung;Seok, Ho-Sik
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.448-453
    • /
    • 2019
  • Under the conflicting objectives of maximum user satisfaction and fast launching, there exist great needs for automated mobile app testing. In automated app testing, detection of usage-state changes is one of the most important issues for minimizing human intervention and testing of various usage scenarios. Because conventional approaches utilizing pre-collected training examples can not handle the rapid evolution of apps, we propose a novel method detecting changes in usage-state through graph-entropy. In the proposed method, widgets in a screen shot are recognized through DNNs and 'onverted graphs. We compared the performance of the proposed method with a SIFT (Scale-Invariant Feature Transform) based method on 20 real-world apps. In most cases, our method achieved superior results, but we found some situations where further improvements are required.

Which country's end devices are most sharing vulnerabilities in East Asia? (거시적인 관점에서 바라본 취약점 공유 정도를 측정하는 방법에 대한 연구)

  • Kim, Kwangwon;Won, Yoon Ji
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.1281-1291
    • /
    • 2015
  • Compared to the past, people can control end devices via open channel. Although this open channel provides convenience to users, it frequently turns into a security hole. In this paper, we propose a new human-centered security risk analysis method that puts weight on the relationship between end devices. The measure derives from the concept of entropy rate, which is known as the uncertainty per a node in a network. As there are some limitations to use entropy rate as a measure in comparing different size of networks, we divide the entropy rate of a network by the maximum entropy rate of the network. Also, we show how to avoid the violation of irreducible, which is a precondition of the entropy rate of a random walk on a graph.

Text Categorization Using TextRank Algorithm (TextRank 알고리즘을 이용한 문서 범주화)

  • Bae, Won-Sik;Cha, Jeong-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.110-114
    • /
    • 2010
  • We describe a new method for text categorization using TextRank algorithm. Text categorization is a problem that over one pre-defined categories are assigned to a text document. TextRank algorithm is a graph-based ranking algorithm. If we consider that each word is a vertex, and co-occurrence of two adjacent words is a edge, we can get a graph from a document. After that, we find important words using TextRank algorithm from the graph and make feature which are pairs of words which are each important word and a word adjacent to the important word. We use classifiers: SVM, Na$\ddot{i}$ve Bayesian classifier, Maximum Entropy Model, and k-NN classifier. We use non-cross-posted version of 20 Newsgroups data set. In consequence, we had an improved performance in whole classifiers, and the result tells that is a possibility of TextRank algorithm in text categorization.

A new Ensemble Clustering Algorithm using a Reconstructed Mapping Coefficient

  • Cao, Tuoqia;Chang, Dongxia;Zhao, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2957-2980
    • /
    • 2020
  • Ensemble clustering commonly integrates multiple basic partitions to obtain a more accurate clustering result than a single partition. Specifically, it exists an inevitable problem that the incomplete transformation from the original space to the integrated space. In this paper, a novel ensemble clustering algorithm using a newly reconstructed mapping coefficient (ECRMC) is proposed. In the algorithm, a newly reconstructed mapping coefficient between objects and micro-clusters is designed based on the principle of increasing information entropy to enhance effective information. This can reduce the information loss in the transformation from micro-clusters to the original space. Then the correlation of the micro-clusters is creatively calculated by the Spearman coefficient. Therefore, the revised co-association graph between objects can be built more accurately because the supplementary information can well ensure the completeness of the whole conversion process. Experiment results demonstrate that the ECRMC clustering algorithm has high performance, effectiveness, and feasibility.

A DoS Detection Method Based on Composition Self-Similarity

  • Jian-Qi, Zhu;Feng, Fu;Kim, Chong-Kwon;Ke-Xin, Yin;Yan-Heng, Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1463-1478
    • /
    • 2012
  • Based on the theory of local-world network, the composition self-similarity (CSS) of network traffic is presented for the first time in this paper for the study of DoS detection. We propose the concept of composition distribution graph and design the relative operations. The $(R/S)^d$ algorithm is designed for calculating the Hurst parameter. Based on composition distribution graph and Kullback Leibler (KL) divergence, we propose the composition self-similarity anomaly detection (CSSD) method for the detection of DoS attacks. We evaluate the effectiveness of the proposed method. Compared to other entropy based anomaly detection methods, our method is more accurate and with higher sensitivity in the detection of DoS attacks.