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Abstract 

 
Ensemble clustering commonly integrates multiple basic partitions to obtain a more accurate 
clustering result than a single partition. Specifically, it exists an inevitable problem that the 
incomplete transformation from the original space to the integrated space. In this paper, a 
novel ensemble clustering algorithm using a newly reconstructed mapping coefficient 
(ECRMC) is proposed. In the algorithm, a newly reconstructed mapping coefficient between 
objects and micro-clusters is designed based on the principle of increasing information 
entropy to enhance effective information. This can reduce the information loss in the 
transformation from micro-clusters to the original space. Then the correlation of the 
micro-clusters is creatively calculated by the Spearman coefficient. Therefore, the revised 
co-association graph between objects can be built more accurately because the 
supplementary information can well ensure the completeness of the whole conversion 
process. Experiment results demonstrate that the ECRMC clustering algorithm has high 
performance, effectiveness, and feasibility. 

 
Keywords: Ensemble clustering, supplementary information, reconstructed mapping 
coefficient, information entropy, Spearman coefficient. 
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1. Introduction 

Clustering, as an important algorithm in data mining field, is used to identify groups of 

similar characteristics. More specifically, in clustering, a set of data is grouped into clusters 
that data in the same sense. In recent years, a large number of improved clustering 
algorithms based on traditional algorithms have made progress to a large extent by using 
various techniques. Generally, these algorithms can be divided into the improvement of 
k-means [1-2], modification based on mean shift [3-4], graph-based partition optimization 
[5-7]. However, no matter how to improve the algorithm cannot avoid the disadvantages 
such as poor visibility, poor stability and high sensitivity to the initialization of a single 
clustering algorithm [8-9]. In order to overcome the shortcomings mentioned above, the 
research of ensemble clustering algorithm has become a hot topic in recent years. Ensemble 
clustering, emerged as a powerful tool, aims at combining multiple different clustering 
results into a probably better and more robust consensus clustering [10]. Many ensemble 
clustering algorithms [11-13] have been proposed in recent years. These algorithms can be 
broadly divided into these categories: based on the optimization of the utility function, based 
on the weights assigned to the base clustering and based on enhancing effective information. 

Firstly, the representative algorithms based on the utility function are KCC [14], ECC [15], 
SIVID [16] and so on. Utility function, which can be optimized by calculating the consensus 
partition from multiple base partitions, is defined to supervise the ensemble clustering 
process. In [14], the consensus clustering problem is transformed into a k-means clustering 
problem. And the utility function used in KCC is calculated by the Shannon entropy which 
makes the algorithm more robust. In order to improve the efficiency, ECC transfers the 
above model to a modified one. And according to efficiently optimize the objective function 
that fuses many basic partitions to a consensus one. A binary matrix gained from each basic 
partition via 1-of-K encoding and a modified distance function are derived, and they are 
beneficial to optimize the utility function. The experiments indicate that ECC is more 
suitable for incomplete multi-view data. However, it is considered that the traditional 
ensemble clustering focuses more on measuring the validity and diversity on base partitions, 
while ignoring the structure of original objects. In order to address this problem, a new 
category utility function is proposed in SIVID. The effectiveness and robustness have been 
greatly improved. 

Secondly, some algorithms are based on the weights assigned to the base clusterings. For 
the clustering ensemble, the quality and diversity measures are considered as two critical 
factors for the selection from the base clustering to be the ensemble. Then in [17], a 
generalized validity function is presented for evaluating the base clustering results of 
categorical data. And a normalization method based on the obtained bounds is proposed, 
which purpose is to reduce the effects of data characteristics on the performance of the base 
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clustering algorithm. The clustering validity indices are adapted to assess the quality of the 
candidate base clustering and to select the base partitions. In LWGP [18], it believes that not 
every base clustering is a correct and useful classification. Moreover, the wrong existence of 
some base clustering that does not contain any useful information can even interfere with the 
final consensus process. Thus, LWGP creatively presents an ensemble-driven cluster validity 
index (ECI) to evaluate the result of ensemble clusters. In this process, a local weighting 
scheme is presented to extend the conventional co-association matrix into the LWCA matrix 
via the ECI measure. In Ref. [20], the weights are globally assigned to the base clusterings 
according to their clustering quality.  

Finally, algorithms to enhance useful information have been increasingly important in 
recent years. From this point of view, many excellent algorithms have taken this as a starting 
point to make the whole ensemble clustering more effective and accurate. With aggregating 
several basic clustering to generate a single output clustering, most of them generate the final 
solution based on incomplete information of a cluster ensemble [19]. SEC [21] adds the idea 
of spectral clustering to it when constructing the similarity matrix between objects. In this 
algorithm, a formula for calculating the weighting coefficient is designed. This operation 
adds a lot of object-level information in the subsequent consensus process and makes the 
algorithm more effective. PTGP [22] aims to use the local structure and the size of the local 
quantity. In the process of calculating the intersection of the micro-clusters, each intersection 
that is not treated equally avoids the structure information lost. It is considered that carrying 
out the straightforward mapping from the base clustering to the object-wise co-association 
matrix lacks some information. This means different clusters are independent of each other. 
In fact, the potentially rich information hidden in the relationship between different clusters 
is lost. In order to overcome this problem, ECPCS [23] uses the random walk to extract the 
rich information contained in the co-association matrix. In this algorithm, the random walk 
[24] process is performed on the associated graph recovering some useful information that 
has been lost. It is a dynamic process using the idea of a probability transfer matrix that 
transits from the object to one of its neighbors at each step with a certain probability. 

In order to make full use of the useful information in the process of the mapping between 
objects and micro-clusters, a novel ensemble clustering algorithm using the reconstructed 
mapping coefficient (ECRMC) is proposed in this paper. Inspired by the principle of 
increasing information entropy to supplementary information, a new reconstructed mapping 
coefficient between the objects and the micro-clusters is introduced which makes less 
information loss. Furthermore, the similarity between the micro-clusters is calculated using 
the Spearman's correlation coefficient [25] which generates more accurate similarity. Finally, 
the edge weights between the whole objects in the correlation graph are captured 
simultaneously, and the hierarchical clustering is proceeding among the object-level 
correlation graph to get the ensemble result. 

The remainder of the paper is organized as follows. Section 2 provides the development of 
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the ensemble clustering based on enhancing effective information more specifically. Then a 
detail of our ECRMC clustering algorithm is described in Section 3. The experimental results 
are given in Section 4. Finally, Section 5 offers conclusions.  

2. Related Work 

In recent years, more and more ensemble clustering algorithms have been proposed to 
solve the shortages of the single clustering algorithm. The process of ensemble clustering is 
given in Fig. 1. It is obviously that the mapping matrix, the micro-cluster’ similarity matrix 
and the co-association matrix all carry some information. Generally, the more information 
each matrix holds, the more helpful for completing the consensus cluster. However, the 
errors in the calculation of the mapping relationship can make some valid information 
contained in the mapping matrix lost. And due to the sensitivity of the similarity measure 
function to data distribution, some relevant information in the micro-clusters’ similarity 
matrix is not fully expressed. Both of them are the important factors that make the 
information of ensemble clustering incomplete. Moreover, many types of information are 
involved in the process of clustering, including feature information, context information, 
relevance information and so on. However, the redundancy of information may lead to the 
inaccurate characteristics of the clustering process, noise interference and other phenomena. 
NSCR [26] adopts the nonnegative spectral analysis to select the most discriminative 
features information. And for learning the best representations information, a novel robust 
structured NMF learning framework is proposed in [27]. DEC [28] is to collaboratively 
explore the rich context information of social images. 

 
Fig. 1. The flow chart of the ensemble clustering algorithm. 
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In the following, some ensemble clustering algorithms improved using enhancing useful 
information will be introduced in detail. From the supplementary information of the objects’ 
co-association matrix, two ensemble clustering algorithms, NegMM [29] and GSOE [30], 
were introduced. NegMM is deduced from the formula that the useful information is 
increased relatively when the redundant information can be reduced under one specific 
condition. Different thresholds are set and the similarity connections smaller than the 
thresholds are abandoned. This operation helps obtain lots of remodeled objects’ 
co-association matrices which are applied in the consensus process. GSOE is also a typical 
example of supplying more effective information using the optimizing co-association matrix 
between the objects. After ranking the collection, it allows inserting effective ranking in any 
selection function. Map the rankings onto a graph structure and the ensemble cluster onto a 
mining problem in a graph. All of these are innovative ways to improve the co-association 
matrix. From using the supplementary information of the micro-cluster’ similarity matrix, 
PTGP [22] and ECPCS [23] use the random walk to construct the similarity graph. They 
think any vertex not only has a connectivity relationship with its nearest neighbor, but also 
has weights between its k-top neighbors. Therefore, more effective information can be used 
in the micro-cluster’ similarity matrix and this can improve the performance of the ensemble 
clustering. In our ECRMC, the information of the mapping matrix is increased by the 
reference set based on the principle of increasing information entropy. And the Spearman 
correlation coefficient is used to build the micro-clusters’ similarity matrix more accurately. 
Both of them are helpful for forming a more precise co-association matrix between objects 
and then beneficial to the consensus cluster. 

3. Reconstructed Mapping Coefficient Ensemble Clustering by 
Increasing Information Entropy 

Let { }1 2 NX = x ,x ,...,x  be a finite subset of a N -dimensional vector space, the goal of 
the ensemble clustering is to assign the relatively authentic label to each object. In this 
section, our new ensemble algorithm based on the reconstructing mapping coefficient will be 
described in detail. Here, the k-means algorithms with different numbers of clusters were 
used to obtain the initial partitions firstly. And for each k-means, the number of clusters mK  

is a random number from ( ,min( ,100))K N  where K  is the number of categories in the 
ground truth and N  is the number of objects in the datasets. After M  initial partitions, 
micro-clusters 1 1 1 2 2 2

1 21 2 1 2 1 2{ }M M M
M

K K K K K K K K K
K K KQ ,Q ...,Q ,Q ,Q ...,Q ,...,Q ,Q ...,Q  are produced, and let 

1

M
C mm=

N = K∑ . The aim of our algorithm is to combine the multiple k-means operations with 
different cluster numbers into a better result. In fact, this can be viewed as an information 
conversion that conveys the information from the multiple k-means operations to the 
ensemble one. Obviously, the mapping coefficient matrix and the co-association matrix can 
be improved to contain more information. The reconstructed mapping matrix and the revised 
co-association matrix we proposed are beneficial to enhance the information. Moreover, the 
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Spearman coefficient which is used to calculate the similarity between micro-clusters helps 
the micro-clusters’ matrix more accurately.  

 

3.1 Reconstructed Mapping Coefficient Matrix 
Mapping coefficient matrix commendably reflects the degree of intimacy from objects to 

micro-clusters. Then we introduce that how to reconstruct the mapping coefficients based on 
the reference sets, and use the principle of increasing information entropy to make this 
matrix contains more information. 

Definition 1. Entropy is uncertainty. It is also the average information in an ensemble (or 
event) [31]. Let the information 1 2{ }i NX = x ,x ,...,x ,...,x  is constituted of N  symbols, and 
the probability that each symbol appears is 1 2{ }i NP p , p ,..., p ,..., p= , then the information 
entropy is  

1
( ) ( ) log ( )                                                      (1)N

i b ii
H X p x p x

=
= −∑                       

Theorem 1. According to the property of additivity of information entropy, the following 
conclusion is drawn, 

1 211 1 21 2 1

1 2
1 2 1

( )

                          ( ) ( )                        (2)

Nr r N Nr

N i i ir
N ii=

i i i

H p ,..., p , p ,..., p ,..., p ,..., p

p p pH p , p ,..., p p H , ,...,
p p p

=

+ ∑
 

where 1 2 1Np + p + ...+ p = ,
1

ir
i ijj=

p = p∑ , and ir  denotes the number of dimension that ip  
can be decomposed . 

Theorem 2. The principle of increasing information entropy. As this principle described, 
when the low dimensional distribution is decomposed into the high dimensional distribution, 
the information entropy increases gradually. 

1 211 1 21 2 1 1 2( )  ( , ,..., )                        (3)
Nr r N Nr NH p ,..., p , p ,..., p ,..., p ,..., p H p p p≥  

Definition 2. Reference set ( SR ). Reference set is defined as a collection of neighbors that 
can provide reference opinions for central object. When determining whether an object is 
related to the micro-cluster, the function of the reference set element is to provide a reference 
opinion. And the reference SR  is defined as follows, r  is used to control the number of 
elements in reference set. 

( ) { | ( ) }                                      (4)S i j i jR x x dist x ,x r= <   

Assume each object can be represented by a D -dimensional vector. The neighbors of the 
element obtained according to the Euclidean distance constitute the collection of reference 
set. The distance expression is as follows, 

2

1
dist( ) ( - )                                             (5)D

i j id jdd=
x ,x x x= ∑  

and the weight of each element in the reference set is calculated as follows, 
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( )

dist( )
1                                             (6)

dist( )
j s i

i j
j

i jx R x

x ,x
x ,x

λ
∈

= −
∑

 

In fact, some useful information has been lost in the process of the mapping from objects 
to micro-clusters. The original mapping matrix P  is sparse and is defined as:      

{ }                                                           (7)
Cil N Np ×=P        

1,     if   
                                                          (8)

0,    otherwise
l

il

i Q
p

∈
= 


 

where lQ  denotes the l - th  micro-cluster, ilp  denotes the original mapping coefficient 

from i - th  object to l - th  micro-cluster. And the previously proposed algorithms directly 
used this sparse matrix to calculate the objects’ co-association matrix. Obviously, objects’ 
co-association matrix is the core part of the ensemble clustering. However, this matrix 
contains so little information that it is of little guiding significance for the ensemble process. 
In fact, each object is not only considered to have a mapping relationship within the cluster 
divided by a single basis partition, but also has a similarity relationship with some points 
outside the cluster. Therefore, in our new algorithm, the information entropy and the 
reference set are used to increase the information. The elements in the reference sets are 
taken into account while calculating the mapping coefficient. The mapping matrix 
reconstructed by the principle of increasing information entropy is more convincing than the 
original one. 

According to Definition 2, using the idea of reference sets, we think that if one object 
which has not mapping relationship to the micro-cluster but its reference neighborhood has 
mapping relationship to the micro-cluster, then we will add the possibility of this object to 
the micro-clusters. Here, we use the example shown in Fig. 2 to describe this process. 
Assume two micro-clusters 1 1

1 2{ , }K KQ Q ( 1 2K = ) can be obtained by an initialization partition 
shown in Fig. 2(a) and the traditional mapping relationship from 

1ix  to the micro-clusters is 
shown in Fig. 2 (b). In order to retain more opinions when making the final decision of 
ensemble clustering, 

1
( )S iR x  is used to represent the reference set of 

1i
x  which is shown 

using the red circle shown in Fig. 2 (c). Because the 
1 1

( )j S ix R x∈ having the mapping 

relationship with 1
2
KQ , then 

1i
x  also builds mapping relationship with it. By considering the 

opinions in reference set, the reconstructed mapping relationship is shown in Fig. 2 (d). The 
reconstructed mapping coefficients from 

1i
x  to 1

1
KQ and 1

2
KQ are 

11
r
ip  and 

1 2
r
ip , and satisfy

1 1 11 2
r r

i i ip = p + p . And specific calculation expressions are shown next in detail. 
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(a)                  (b)                   (c)                  (d) 

Fig. 2. (a)The initialization partition, (b) The traditional mapping relationship, (c) The partition with 
reference set, (d) The reconstructed mapping relationship. 

 

And then the reconstructed mapping coefficient matrix rP  can be written as 

 { }                                                            (9)
C

r
il N NprP ×=  

                ( )                                        (10)
j S i

il j ilx R x pρ λ∈= ∑  

' '1

                                                           (11)
m

r il
il K

ill

p ρ

ρ
=

=
∑

                                                              

Where ilp  is the traditional mapping coefficient from i - th  object to l - th  micro-cluster, 
r
ilp  is the reconstructed mapping coefficient from i - th  object to l - th micro-cluster using 

the idea of reference set, mK  is the number of micro-clusters in each base partition. Because 
the base partitions are hard cluster, there exists only one mapping relationship from one 
object to the mK  micro-clusters obtained by one base partition, and the mapping coefficient 
is 1. On the basis of Eq. (10), the original mapping relationship of non-1-or-0 has become a 
probabilistic mapping. And by the normalized operation of Eq. (11), the original mapping 
coefficient can be decomposed into the sum of reconstructed mapping coefficients. In this 
way, the probability dimensions of the mapping from an object to the micro-clusters 
increases. According to the principle of increasing information entropy in Theorem 2, 
increasing the dimension of probability distribution can increase the information entropy, 
then the information contained in the reconstructed mapping matrix increases. In the next 
step, we will use this reconstructed mapping matrix to revise the co-association matrix to 
make the objects' similarity more accurate. 

3.2 Revised Co-association Matrix 

In section 3.1, the reconstructed mapping coefficient can be obtained from the object 
mapping to the micro-cluster and it reflects the degree of the intimate relationship between 
objects and micro-clusters. After the new mapping matrix from objects to micro-clusters 
finished, it can be used to revise the co-association matrix. The co-association matrix gives 
the similarity between the objects, and this revised co-association matrix will be used in the 
subsequent consensus processes. The traditional co-association matrix depicts the frequency 
of a pair objects appearing in the same micro-cluster shown in Eq. (12). 

{ }                                                              (12)ij N Nc ×=C                         
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1
( )

                                                         (13)
CN

ll=
ij

T i, j,Q
c

M
= ∑

 

1       ,
( )                                             (14)

0      otherwise
i l j l

l

x Q x Q
T i, j,Q

∈ ∈
= 


 

CN  denotes the number of the micro-clusters. 
ijc  denotes the similarity between i - th  

object and j - th  one. i lx Q∈  means that ix  has been assigned to the l - th  micro-cluster 
in one original k-means operations. However, this co-association matrix ignores the 
interrelationships between different micro-clusters. In order to overcome this problem, a 
revised co-association matrix is proposed which can simultaneously capture the 
micro-clusters' information and objects' information. 

Firstly, the similarity between the l - th  micro-cluster and h - th  micro-cluster, 
( )l hS Q ,Q , is given. Generally, the similarity can be calculated by the Pearson correlation 

coefficient and Spearman correlation coefficient. Pearson correlation coefficient is more 
applicable to measure the degree of linear correlation between the data samples which obey 
the normal distribution and Spearman correlation coefficients is a rank correlation coefficient 
which is also suitable for nonlinear correlation of any distributed data samples. For the 
generalization of our algorithm, the Spearman correlation coefficient is adopted in our 
algorithm. The reconstructed mapping coefficients for the l - th  and the h - th  
micro-clusters are 1 2{ }r r r

l l l NlQ p , p ,..., p=  and 1 2{ }r r r
h h h NhQ p , p ,..., p= respectively. The 

similarity ( )l hS Q ,Q  between l th−  and h th−  micro-cluster can be written as, 

1( )                        (15)
N

i ii
l h

N N
i ii i

S Q ,Q =
µ µ ν ν

µ µ ν ν

=

2
2

=1 =1

(  − )( − )
           

( − ) ( − )

∑
∑ ∑

 

where µ  and ν  denote the ranked serial numbers for lQ  and hQ . µ  and ν  denote 
the mean of  and .  Here, we use the following example to show how to construct µ
and ν . For {170,150,210,180,160}lQ =  and {180,165,190,168,172}hQ = , sort their 
elements in descending order, then the rank of lQ  and hQ  are {3,1,5,4,2}µ = and  

{4,1,5,2,3}ν =  respectively. Therefore, the similarity between lQ  and hQ  is 
( ) 0.7l hS Q ,Q =  which is calculated using Eq. (15). 

Then the revised co-association matrix rC  can be calculated as 

{ }                                                           (16)r
ij N Nc ×=rC  

1 1
( Q ) ( Q ) (Q ,Q )

                                 (17)
C CN N

l h l hr l= h=
ij

T i, T i, S
c

M
= ∑ ∑   

1       
( )                                                (18)

0      otherwise  
i l

l

x Q
T i,Q

∈
= 


 

1       
( )                                               (19)

0      otherwise  
j h

h

x Q
T j,Q

∈
= 


 

µ ν
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This revised co-association matrix is calculated based on the similarity of the micro-clusters 
that objects-pairs divided into. After the revised co-association matrix is obtained, the 
consensus process is proceeded using this revised co-association matrix. 

3.3 Consensus Process 

Consensus process is the highlight task of ensemble clustering. Generally, hierarchical 
clustering [32] is adopted. Hierarchical clustering uses a hierarchical nested cluster tree 
which is created by calculating the similarity between data points of different category. Let 

0R  be the initial clusters, and the number of clusters is initialized as N . That is, 

0
0 0 0 0 0

1 2{ }                                           (20)
|R |

R = R ,R ,...,R ,  | R |= N    

Then merge the two most similar points as a new cluster and the number of clusters is 
reduced by one. Simply speaking, the merging algorithm of hierarchical clustering is to 
calculate the mini-distance between data points of each category. The method for calculating 
the distance between two combined data points is Complete Linkage. Complete Linkage 
takes the mean of all the distances as the distance between two combined data points. The 
expression is, 

,                                                    (21)
| |

i j

r
klk R l R

ij
i j

c
sim

R || R
∈ ∈

=
∑  

where 
ijsim  denotes the average linkage between i - th  and j - th  regions. iR  and

jR  
denote the elements' number in i - th  and j - th  regions. The true label numbers has been 
given in advance, through iteration, when the number of regions is equal to the number of 
true label numbers, the iteration stops. That's the process of consensus process. For clarity, 
the overall algorithm of ECRMC is summarized in Table 1.  
 

Table 1. The ensemble clustering algorithm using a new reconstructed mapping coefficient 
(ECRMC) 

Input: Dataset X  
       Number of the objects in dataset N 
       Number of clusters K  
       Number of the basic clusterings M  
 for 1:m M=  
      mK  is equal to a random number from ( ,min( ,100))K N ; 
     { } kmeans( )m m m

m

K K K
1 2 K mQ ,Q ,...,Q X ,K=  

End 
Obtain 

1

M
C mm=

N = K∑  micro-clusters, and initializes the mapping matrix. 

 Find the reference sets for each object by Eq. (4). 
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 Reconstructed the mapping coefficient by Eq. (10)(11) taking the advice of the elements 
in reference set. 

 Calculate the similarity between micro-clusters by Eq. (15). 
 Gain the Revised Co-association Matrix by Eq. (16)(17). 
 Consensus process by Eq. (21), and achieve the optimal result. 
Output: The final clustering result. 

3.4 Complexity Analysis 
In our ECRMC, the computational cost includes these parts, the initializing k-means 

operations, the reconstructed mapping matrix, the similarity between micro-clusters and 
revised co-association matrix. The complexity of the initialized mapping matrix is 

1( )M
mmO l K ND= ⋅∑ which is obtained by M  k-means operations. Here, N  is the number 

of the objects in the datasets, D  is the feature dimension, l  is the iteration number of the 
k-means and mK  is the number of clusters. For getting the reconstructed mapping matrix, 
each object gets its distance from other objects firstly by Eq.(5), its computational 
complexity is ( )O D . And then the complexity of getting the mapping value is 

( )O T N D T N⋅ ⋅ + ⋅ , where T  is the number of objects in the reference set, and T N . 

Next, the computational complexity of calculating the micro-clusters similarity is 2( )O N . 
The computational complexity of obtaining the revised co-association matrix is 

2 2( )CO N N⋅ , CN  is the number of micro-clusters. Finally, the computational complexity of 

the consensus process is 2( )O N D⋅ . Therefore, the whole computational complexity of our 

ECRMC is 2 2 2
1( )M

m CmO lK ND TND TN N N N D= + + + ⋅ +∑ . 

4. Experiments 

In order to validate the performance of the ECRMC clustering algorithm, a set of 
experiments are conducted on a variety of benchmark datasets. The performances of the 
ECRMC, k-means, KCC [14], ECC [15], SEC [21], PTGP [22], ECPCS-HC [23] and LWGP 
[18] are compared through the experiments. The results show that our ECRMC clustering 
algorithm has high performance and flexibility. 

In the experiments, eleven benchmark datasets are used, Breast Cancer (BC), Letter 
Recognition (LR), MNIST, Pen Digits (PD), COIL20, USPS, Iris, semeion, Image 
Segmentation (IS), steel plates faults (SPF) and vehicle silhouettes (VS). BC dataset consists 
of 683 objects, which can be divided into two categories: diseased cells and normal cells, and 
each object is 9 dimensions. LR dataset consisted of 20000 English letter objects with 16 
dimensions can be divided into 26 categories. MNIST, PD, Semeion and USPS are the 
handwritten digital datasets with 10 categories, and the characteristic dimension of the 
separation is 784, 16, 256 and 256. COIL20 contains 20 categories, each rotated 360 degrees 
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horizontally, taking a picture every five degrees. Iris dataset is also known as iris flower 
dataset, which contains 150 data samples, divided into 3 categories, 50 for each category. IS 
dataset consisted of 2100 objects can be divided into 7 categories. SPF dataset is steel plates 
faults dataset whose characteristic dimension is 27, and can be divided into 7 categories. And 
VS dataset consisted of 846 objects can be divided into 4 categories. Except MNIST and 
USPS datasets are from [33], others are from the UCI machine learning repository [34]. For 
convenience, we summarize the eleven sets in Table 2 with the characteristics of the data 
sets. The three columns show the number of objects N , the number of classes k  and the 
dimension of the feature space d . 

 
Table 2. Eleven data sets used in our experiments 

datasets N  d  k  

BC 683 9 2 

LR 20000 16 26 

MNIST 5000 784 10 

PD 10992 16 10 

COIL20 1440 4096 20 

USPS 11000 256 10 

Iris 150 4 3 

semeion 1593 256 10 

IS 2100 19 7 

SPF 1941 27 7 

VS 846 18 4 

 

4.1 Evaluation Index 

In order to evaluate the results of clustering more accurately, three evaluation indicators 
(Normalized mutual information, Adjusted Rand index and Accuracy rate) are used. All of 
which are calculated over 20 runs for the eight clustering algorithms. 

Normalized mutual information (NMI) [35] Let *π  be the final clustering result 
obtained by the clustering algorithm, gπ  be the ground-truth labels. Then the NMI is 
calculated as follows, 
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where, *n  and gn  is the cluster numbers of  and  respectively. *
in  and g

jn  is 

the number of objects in the i - th  and j - th  cluster of  and .  

Adjusted Rand index (ARI) [36] The ARI measures the agreement of the clustering 
result with the true cluster structure. ARI is computed by,  

* 00 11 01 10

00 01 01 11 00 10 10 11

2( )ARI( , )                     (23)
( )( ) ( )( )

g N N N N
N N N N N N N N

π π −
=
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where 11N  is the number of object-pairs that belong to the same cluster in both  and 
, 00N  is the number of object pairs that belong to different clusters in both and 
, 10N  is the number of object-pairs that belong to the same cluster in  while 

belonging to different clusters in , and 01N  is the number of object-pairs that belong to 
different clusters in  while belong to the same cluster in .  

Accuracy rate (AC) The accuracy rate calculates the proportion of label stations in each 
category. It is given by, 

*AC( , )                                                       (24)g SN
N

π π =  

where N  is the total number of the objects, and 
SN denotes the number of object-pairs that 

both belong to the same cluster set in  and . 

4.2 Results 
In the experiments, all the algorithms run for 20 times in order to eliminate the effects of 

randomness embedded in the algorithms. At each run, the integration of 20 basic clustering 
as a whole and the number of clusters randomly selected in the range of ( ,min( ,100))K N  
in each basic clustering, where K  is the number of clusters and N  is the number of 
objects in the datasets. The mean and standard deviation of the NMI, the ARI and the AC are 
given in Table 4, Table 5 and Table 6, respectively. From the results of Table 4, it may be 
realized that our ECRMC clustering algorithm performs superior to k-means, KCC, ECC, 
SEC, PTGP, ECPCS-HC and LWGP algorithm under the NMI scores. Except 4 out of 11 
datasets are slightly worse than LWGP, others are all the best scores in the remained 
algorithms. From the results of Table 5, it can be seen the performance of our ECRMC 
clustering algorithm is better than other seven algorithms. On 7 out of 11 datasets, ECRMC 
performs better than other algorithms and on the remaining datasets ECRMC exhibits better 
performance. LWGP ranks first on the LR and IS datasets, and USPS ranks the first on the 
USPS dataset. Table 6 shows that our ECRMC method is ranked in the first position with a 
high AC index for the BC, PD, MNIST, LR, semeion, and SPF datasets respectively. It is a 
pity that our ECRMC method ranks the third place under the coil20 dataset and LWGP gets 

*π gπ
*π gπ

*π
gπ *π
gπ *π

gπ
*π gπ

*π gπ



2970                       Cao et al.: A new Ensemble Clustering Algorithm using a Reconstructed Mapping Coefficient 

the best grade. In fact, from Table 4 to Table 6, one may observe that our algorithm 
outperforms other seven algorithms in the average sense. 

Table 4. Mean and standard deviation of the NMI(%) produced by the eight algorithms. 
datasets kmeans KCC ECC SEC PTGP ECPCS-HC LWGP ECRMC 

BC 74.191±0.16 77.868±10.22 79.362±1.86 59.413±26.26 74.705±3.01 79.460±1.06 78.057±1.87 81.395±2.48 

PD 66.667±1.57 67.438±3.74 69.938±2.67 54.449±7.58 73.971±5.69 74.910±5.35 76.903±3.27 77.875±4.19 

MNIST 50.468±1.37 56.088±2.77 57.446±2.08 53.171±4.32 57.587±1.26 60.359±1.58 63.251±2.26 63.354±1.87 

LR 34.867±0.59 37.04±0.95 34.881±0.83 33.420±1.44 38.761±1.20 39.230±0.81 40.902±1.73 39.775±1.15 

COIL20 72.160±2.43 75.534±1.18 75.274±2.27 74.553±2.98 68.392±1.97 76.844±1.19 79.468±1.34 80.791±0.92 

USPS 44.119±1.22 52.771±3.32 57.009±3.01 48.357±4.36 56.006±5.09 56.951±4.07 61.399±3.19 57.552±2.89 

Iris 72.253±0.77 76.918±3.57 75.611±2.79 58.502±22.12 77.546±5.02 77.999±0.96 74.567±3.56 78.359±1.11 

semeion 42.744±2.28 47.443±2.54 55.610±1.64 55.201±2.86 64.087±1.84 60.366±2.24 64.203±1.88 65.092±1.43 

SPF 8.032±2.90 4.361±1.71 9.899±1.93 7.1533±2.18 13.125±2.29 11.032±1.63 13.876±2.67 13.151±1.43 

IS 47.452±4.61 52.414±0.91 51.471±2.01 44.909±5.72 54.315±4.85 55.109±2.79 62.174±2.91 59.343±3.16 

VS 16.805±1.08 16.086±2.93 18.682±1.07 15.863±4.97 18.123±2.09 18.291±1.42 13.356±1.16 19.624±0.44 

average 46.869 51.269 52.967 45.908 54.147 55.495 57.105 57.983 

Table 5. Mean and standard deviation of the ARI (%) produced by the eight algorithms. 
datasets kmeans KCC ECC SEC PTGP ECPCS-HC LWGP ECRMC 

BC 84.651±0.12 84.088±14.33 87.980±1.27 46.090±35.22 84.599±3.72 87.717±2.25 87.051±2.05 88.661±2.57 

PD 54.033±3.81 54.003±6.21 52.574±5.11 30.687±9.99 63.875±4.87 63.711±5.22 67.05±4.69 67.739±4.96 

MNIST 40.027±2.01 44.515±4.11 45.056±3.73 38.657±6.46 46.383±1.41 50.158±2.30 51.239±1.77 53.087±1.58 

LR 12.852±0.61 14.828±1.04 13.375±0.66 12.463±1.79 16.166±1.29 14.398±0.73 16.213±1.27 15.568±1.45 

COIL20 51.487±4.41 56.971±2.73 53.055±2.48 54.752±6.59 45.517±3.07 58.253±2.06 62.748±1.89 64.791±1.38 

USPS 28.901±1.93 36.828±4.88 37.151±4.58 31.655±4.90 41.677±4.33 46.385±1.65 46.147±2.41 44.658±2.97 

Iris 69.051±9.25 73.050±2.06 73.120±2.97 50.226±16.26 73.999±7.27 73.643±4.05 70.161±3.41 74.282±3.67 

semeion 36.307±2.71 36.702±3.21 37.519±3.49 39.397±4.30 52.441±2.48 48.443±1.10 52.073±1.63 52.892±1.33 

SPF 4.060±1.70 2.899±1.83 4.600±0.48 3.361±1.61 6.508±2.89 6.146±1.19 7.327±2.45 7.838±2.12 

IS 34.771±5.19 38.749±2.94 37.604±3.29 30.625±6.19 40.118±6.68 45.529±2.89 52.108±2.72 48.969±3.15 

VS 12.269±0.61 12.993±2.49 15.050±0.72 10.911±4.87 12.317±1.25 12.968±1.42 11.693±1.46 13.731±1.34 

average 36.219 41.369 41.462 33.439 43.964 46.127 47.619 48.484 

Table 6. Mean and standard deviation of the AC(%) produced by the eight algorithms. 
datasets kmeans KCC ECC SEC PTGP ECPCS-HC LWGP ECRMC 

BC 96.054±0.03 96.691±1.32 96.775±1.96 89.375±10.74 96.025±2.90 96.867±2.52 96.276±2.44 97.042±2.84 

PD 71.855±3.09 69.857±4.97 69.915±4.38 57.385±14.26 80.085±5.01 77.047±6.16 81.045±4.87 82.351±5.73 

MNIST 59.849±1.85 62.048±4.11 62.645±3.27 57.582±5.45 66.658±4.11 60.851±3.27 67.096±3.75 67.482±3.39 

LR 28.275±1.07 28.846±0.96 26.339±1.08 26.443±1.26 31.416±1.36 31.154±1.15 32.987±1.22 32.991±0.86 

COIL20 61.941±4.39 64.694±3.07 62.633±4.42 63.687±3.49 75.417±1.54 63.674±1.85 75.563±2.06 71.465±1.93 
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USPS 46.633±1.99 54.216±4.23 54.057±3.82 52.102±3.84 61.887±2.45 58.665±3.43 60.465±3.10 58.126±4.56 

Iris 86.733±6.87 89.233±0.95 89.335±1.56 70.533±15.18 90.367±3.23 89.500±2.67 88.032±2.22 89.867±1.85 

semeion 50.433±3.17 45.527±3.50 60.830±3.32 59.561±2.62 73.731±1.80 65.725±2.00 72.718±1.96 73.944±3.32 

SPF 39.879±2.29 20.649±2.12 41.621±1.93 39.196±2.36 36.906±3.92 43.635±3.57 39.356±2.67 44.742±3.76 

IS 52.514±4.26 58.131±0.81 55.249±2.72 52.929±3.59 64.143±5.67 58.936±4.13 66.361±2.87 65.031±4.45 

VS 29.291±4.83 43.363±2.80 45.100±1.14 43.085±5.77 48.292±3.71 44.539±1.09 49.298±1.43 45.508±1.52 

average 60.98 58.023 60.409 55.625 65.902 62.814 66.291 66.322 

 

4.3 Effect of the Parameters 

4.3.1 Analysis of Parameter T  

The parameter T  represents the number of samples in reference sets we take when the 
reconstructed the mapping coefficient being build. In the experiment, T  is derived from the 
values range from 5 percent to 20 percent of the true number of each category. The results 
are averaged over 20 runs for each value of T . The mean of the NMI, the ARI and the AC 
are shown in Fig. 3. The horizontal coordinate is the parameter T , and the longitudinal 
coordinate is three indexes with NMI, ARI and AC. The figures show that, as expected, as 
the T  is increased, the NMI, the ARI and the AC obtained by our ECRMC clustering 
algorithm keep stable. 
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(g)                     (h)                    (i) 

 

 (j)                      (k) 
Fig. 3. The mean of the NMI, the ARI and the AC obtained with different T by our ECRMC clustering 
algorithm for the (a)BC, (b)PD, (c) MNIST, (d) VS, (e)COIL20, (f)USPS, (g)Iris, (h) semeion, (i)SPF, 

(j)IS, (k)LR.  

 

4.3.2 Analysis of Parameter M 
The parameter M  denotes the times we do the k-means, and the clustering results with 

different M obtained by the six ensemble clustering algorithms are shown in Fig. 4, Fig. 5 
and Fig. 6. We can clearly observe that in the process of M  changing from 10 to 50, the 
scores of the three evaluation indexes fluctuate in a small range. Firstly, we analyze Fig. 4, 
under BC, PD, MNIST, Letters and semeion datasets, both in terms of stability and in terms 
of scoring, our ensemble clustering is slightly better. Under COIL20, USPS, iris datasets we 
are behind the PTGP on both counts, and under VS datasets, although we scored poorly, we 
were the least affected by M . Under SPF dataset, our ensemble clustering basically keeps 
level with ECPCS-HC. In the case of IS dataset, when M  is equal to 10, PTGP algorithm 
gains an advantage. When M  is equal to 20, 30, 40 and 50, our ensemble algorithm has a 
little advantage. And in Fig. 5, with the exception of the VS and Letters dataset, which do 
not get the best results, the other nine datasets were as good as ever. As shown in Fig. 6, our 
ensemble clustering generally obtains the best performance among the whole ten datasets, 
and it's basically not affected by M  very much. From the overall influence of the ensemble 
size on the algorithm score comes to see, our algorithm is indeed very little affected. 
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(a)                      (b)                      (c)            

 

  (d)                      (e)                      (f) 
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 (j)                      (k) 

 
Fig. 4. The mean AC index obtained by the five ensemble algorithms with different M for (a)BC,  

 (b)COIL20, (c) Iris, (d) IS, (e)MNIST, (f)PD, (g)semeion, (h)SPF, (i)USPS, (j)VS and (k)LR. 
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(a)                       (b)                     (c)           

 

    (d)                       (e)                     (f) 

 

(g)                     (h)                     (i) 

 

(j)                       (k) 

 
Fig. 5. The mean of the ARI index obtained by the five ensemble algorithms with different M for 

(a)BC, (b)PD, (c) MNIST, (d) VS, (e)COIL20, (f)USPS, (g)Iris, (h) semeion, (i)SPF, (j)IS and (k)LR. 
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(a)                       (b)                      (c)             

 

(d)                      (e)                       (f) 

 

             (g)                       (h)                     (i) 

 

 (j)                      (k) 

 
Fig. 6. The mean of the NMI index obtained by the five ensemble algorithms with different M for 
(a)BC, (b)PD, (c) MNIST, (d) VS, (e)COIL20, (f)USPS, (g)Iris, (h) semeion, (i)SPF, (j)IS, (k)LR. 
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4.4 The effect of the reconstructed mapping coefficient matrix 

In this section, we will test the effect of the proposed reconstructed mapping coefficient 
matrix. In the experiments, the performance of the algorithm using the reconstructed 
mapping coefficient matrix and without it are compared. The results which are calculated 
over 20 runs are shown in the Fig. 7. In the figure, the yellow bars indicate the results 
obtained using the reconstructed mapping coefficient matrix while the blue show the results 
without the reconstructed mapping coefficient matrix. Generally, as shown in Fig. 7, the 
proposed reconstructed mapping coefficient matrix make the clustering algorithm getting 
better results. 

 

(a)                                   (b) 

  

    (c) 

Fig. 7. The NMI, ARI and AC obtained using the reconstructed mapping coefficient matrix and 
without it: (a) NMI, (b) ARI, (c) AC. Here, the numbers in the horizontal coordinate represent the 11 

datasets used in our experiments. And 1 to 11 represent BC, PD, MNIST, LR, coil20, USPS, Iris, 
semeion, SPF, IS and VS, respectively. 
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5. Conclusion 

In this paper, a new ensemble clustering algorithm using a reconstructed mapping 
coefficient (ECRMC) is proposed. As we know, there is often a loss of information in the 
process of information transmission. And the loss of some useful information will have a bad 
effect on the ensemble clustering. In order to reduce information loss, a reconstructed 
mapping coefficient matrix is given which makes use of the key information of the 
neighborhood to add the supplementary information. Moreover, the Spearman's correlation 
coefficient is used to measure the similarity between micro-cluster sets. It's very friendly to 
any distribution of data, such as the non-normally distributed. Finally, the co-association 
matrix is revised and the consensus process is applied to obtain the clustering result.  The 
superiority of the ECRMC clustering algorithm over k-means, KCC, ECC, SEC, PTGP, 
ECPCS-HC and LWGP algorithm has demonstrated by the experiments. All the experimental 
results described in this paper have shown that our algorithm is effective. 
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