• Title/Summary/Keyword: Graph Partition

Search Result 62, Processing Time 0.025 seconds

A new Ensemble Clustering Algorithm using a Reconstructed Mapping Coefficient

  • Cao, Tuoqia;Chang, Dongxia;Zhao, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2957-2980
    • /
    • 2020
  • Ensemble clustering commonly integrates multiple basic partitions to obtain a more accurate clustering result than a single partition. Specifically, it exists an inevitable problem that the incomplete transformation from the original space to the integrated space. In this paper, a novel ensemble clustering algorithm using a newly reconstructed mapping coefficient (ECRMC) is proposed. In the algorithm, a newly reconstructed mapping coefficient between objects and micro-clusters is designed based on the principle of increasing information entropy to enhance effective information. This can reduce the information loss in the transformation from micro-clusters to the original space. Then the correlation of the micro-clusters is creatively calculated by the Spearman coefficient. Therefore, the revised co-association graph between objects can be built more accurately because the supplementary information can well ensure the completeness of the whole conversion process. Experiment results demonstrate that the ECRMC clustering algorithm has high performance, effectiveness, and feasibility.

A Three-Step Heuristic Algorithm For Optimal PLA Column and/or Row Folding (PLA 열 또는 행의 최적 겹침쌍을 찾기위한 3 단계 휴리스틱 알고리즘)

  • Yang, Yeong-Yil;Kyung, Chong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.591-594
    • /
    • 1988
  • A three-step heuristic algorithm for PLA column folding and row folding of column-folded PLA is presented, which is significantly faster than the earlier works and provides nearly optimal results. The three steps are i) min-cut partition of vertices in the column (or row) intersection graph, ii) determination of products' order using Fiduccia's min-net cut algorithm, and iii) head-tail pairing for column folding, while some heuristics are proposed for deciding row folding pairs. The time complexity of this algorithm is O($n^{2}$log n) compared to the O($n^{3}$) - O($n^{4}$) of the earlier works.$^[2][3][9]$ For a test PLA with 23 inputs, 19 outputs and 52 products, the number of column folding pairs obtained using this algorithm is 20 which is optimal, as compared to 17 in a previous work.

  • PDF

Iterative mesh partitioning strategy for improving the efficiency of parallel substructure finite element computations

  • Hsieh, Shang-Hsien;Yang, Yuan-Sen;Tsai, Po-Liang
    • Structural Engineering and Mechanics
    • /
    • v.14 no.1
    • /
    • pp.57-70
    • /
    • 2002
  • This work presents an iterative mesh partitioning approach to improve the efficiency of parallel substructure finite element computations. The proposed approach employs an iterative strategy with a set of empirical rules derived from the results of numerical experiments on a number of different finite element meshes. The proposed approach also utilizes state-of-the-art partitioning techniques in its iterative partitioning kernel, a cost function to estimate the computational cost of each submesh, and a mechanism that adjusts element weights to redistribute elements among submeshes during iterative partitioning to partition a mesh into submeshes (or substructures) with balanced computational workloads. In addition, actual parallel finite element structural analyses on several test examples are presented to demonstrate the effectiveness of the approach proposed herein. The results show that the proposed approach can effectively improve the efficiency of parallel substructure finite element computations.

Interactive Region Segmentation Method Using Agglomerative Clustering

  • Park, Sanghyun
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.89-99
    • /
    • 2018
  • Due to global warming, various natural disasters such as floods and droughts are increasing. If we can detect the possibility of natural disasters in advance, we can prevent massive damages caused by natural disasters. Recent advances in visual sensor technologies have enabled remote monitoring of a variety of natural environments, including lakes, rivers, and shores. In this paper, we propose a method to segment an image obtained from video sensor networks into regions in order to monitor the environment effectively. In the proposed method, we first partition the image into superpixels and model the connections between superpixels as a graph. Then, initial seeds for each region are set by using the prior information, and the initial seeds are expanded to form regions using agglomerative clustering. Experimental results show that the proposed method extracts the regions from natural environment images easily and accurately.

A Minimum Cut Algorithm Using Maximum Adjacency Merging Method of Undirected Graph (무방향 그래프의 최대인접병합 방법을 적용한 최소절단 알고리즘)

  • Choi, Myeong-Bok;Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.143-152
    • /
    • 2013
  • Given weighted graph G=(V,E), n=|V|, m=|E|, the minimum cut problem is classified with source s and sink t or without s and t. Given undirected weighted graph without s and t, Stoer-Wagner algorithm is most popular. This algorithm fixes arbitrary vertex, and arranges maximum adjacency (MA)-ordering. In the last, the sum of weights of the incident edges for last ordered vertex is computed by cut value, and the last 2 vertices are merged. Therefore, this algorithm runs $\frac{n(n-1)}{2}$ times. Given graph with s and t, Ford-Fulkerson algorithm determines the bottleneck edges in the arbitrary augmenting path from s to t. If the augmenting path is no more exist, we determine the minimum cut value by combine the all of the bottleneck edges. This paper suggests minimum cut algorithm for undirected weighted graph with s and t. This algorithm suggests MA-merging and computes cut value simultaneously. This algorithm runs n-1 times and successfully divides V into disjoint S and V sets on the basis of minimum cut, but the Stoer-Wagner is fails sometimes. The proposed algorithm runs more than Ford-Fulkerson algorithm, but finds the minimum cut value within n-1 processing times.

Graph-based High-level Motion Segmentation using Normalized Cuts (Normalized Cuts을 이용한 그래프 기반의 하이레벨 모션 분할)

  • Yun, Sung-Ju;Park, An-Jin;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.11
    • /
    • pp.671-680
    • /
    • 2008
  • Motion capture devices have been utilized in producing several contents, such as movies and video games. However, since motion capture devices are expensive and inconvenient to use, motions segmented from captured data was recycled and synthesized to utilize it in another contents, but the motions were generally segmented by contents producers in manual. Therefore, automatic motion segmentation is recently getting a lot of attentions. Previous approaches are divided into on-line and off-line, where ow line approaches segment motions based on similarities between neighboring frames and off-line approaches segment motions by capturing the global characteristics in feature space. In this paper, we propose a graph-based high-level motion segmentation method. Since high-level motions consist of repeated frames within temporal distances, we consider similarities between neighboring frames as well as all similarities among all frames within the temporal distance. This is achieved by constructing a graph, where each vertex represents a frame and the edges between the frames are weighted by their similarity. Then, normalized cuts algorithm is used to partition the constructed graph into several sub-graphs by globally finding minimum cuts. In the experiments, the results using the proposed method showed better performance than PCA-based method in on-line and GMM-based method in off-line, as the proposed method globally segment motions from the graph constructed based similarities between neighboring frames as well as similarities among all frames within temporal distances.

Allocation Techniques for NVM-Based Fast Storage Considering Application Characteristics (응용의 특성을 고려한 NVM 기반 고속 스토리지의 배치 방안)

  • Kim, Jisun;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.65-69
    • /
    • 2019
  • This paper presents an optimized adoption of NVM for the storage system considering application characteristics. To do so, we first characterize the storage access patterns for different application types, and make two prominent observations that can be exploited in allocating NVM storage efficiently. The first observation is that a bulk of I/O does not happen on a single storage partition, but it is varied significantly for different application categories. Our second observation is that there exists a large proportion of single accessing in storage data. Based on these observations, we show that maximizing the storage performance with NVM is not obtained by fixing it as a specific storage partition but by allocating it adaptively for different applications. Specifically, for graph, database, and web applications, using NVM as a swap, a journal, and a file system partitions, respectively, performs well.

An Energy Estimation-based Routing Protocol for Maximizing Network Lifetime in Wireless Sensor Networks (무선 센서네트워크에서 네트워크 수명을 최대화하기 위한 에너지 추정 기반의 라우팅 프로토콜)

  • Hong, Ran-Kyung;Kweon, Ki-Suk;Ghim, Ho-Jin;Yoon, Hyun-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.281-285
    • /
    • 2008
  • Wireless sensor networks are closely related with the geometric environment in which they are deployed. We consider the probable case when a routing protocol runs on an environment with many complex obstacles like downtown surroundings. In addition, there are no unrealistic assumptions in order to increase practicality of the protocol. Our goal is to find a routing protocol for maximizing network lifetime by using only connectivity information in the complex sensor network environment. We propose a topology-based routing algorithm that accomplishes good performance in terms of network lifetime and routing complexity as measures. Our routing algorithm makes routing decision based on a weighted graph as topological abstraction of the complex network. The graph conduces to lifetime enhancement by giving alternative paths, distributing the skewed burden. An energy estimation method is used so as to maintain routing information without any additional cost. We show how our approach can be used to maximize network lifetime and by extensive simulation we prove that out approach gives good results in terms of both measures-network lifetime and routing complexity.

User Bandwidth Demand Centric Soft-Association Control in Wi-Fi Networks

  • Sun, Guolin;Adolphe, Sebakara Samuel Rene;Zhang, Hangming;Liu, Guisong;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.709-730
    • /
    • 2017
  • To address the challenge of unprecedented growth in mobile data traffic, ultra-dense network deployment is a cost efficient solution to offload the traffic over some small cells. The overlapped coverage areas of small cells create more than one candidate access points for one mobile user. Signal strength based user association in IEEE 802.11 results in a significantly unbalanced load distribution among access points. However, the effective bandwidth demand of each user actually differs vastly due to their different preferences for mobile applications. In this paper, we formulate a set of non-linear integer programming models for joint user association control and user demand guarantee problem. In this model, we are trying to maximize the system capacity and guarantee the effective bandwidth demand for each user by soft-association control with a software defined network controller. With the fact of NP-hard complexity of non-linear integer programming solver, we propose a Kernighan Lin Algorithm based graph-partitioning method for a large-scale network. Finally, we evaluated the performance of the proposed algorithm for the edge users with heterogeneous bandwidth demands and mobility scenarios. Simulation results show that the proposed adaptive soft-association control can achieve a better performance than the other two and improves the individual quality of user experience with a little price on system throughput.

A Genetic Algorithm Application to Scalable Management of Multimedia Broadcast Traffic in ATM LANE Network (ATM LANE에서의 멀티미디어 방송형 트래픽의 Scalable한 관리를 위한 유전자 알고리즘 응용)

  • Kim, Do-Hoon
    • The KIPS Transactions:PartC
    • /
    • v.9C no.5
    • /
    • pp.725-732
    • /
    • 2002
  • Presented is a Genetic Algorithm (GA) for dynamic partitioning an ATM LANE(LAN Emulation) network. LANE proves to be one of the best solutions to provide guaranteed Quality of Service (QoS) for mid-size campus or enterprise networks with minor modification of legacy LAN facilities. However, there are few researches on the efficient LANE network operations to deal with scalability issues arising from broadcast traffic delivery. To cope with this scalability issue, proposed is a decision model named LANE Partitioning Problem (LPP) which aims at partitioning the entire LANE network into multiple Emulated LANs (ELANS), each of which works as an independent virtual LAN.