198841 HHE - HT 1T &

88 /17

PLA & =+ 39 3
3 A Fyx

q das

TgAds
IR E EX R e)

A Three-Step Heuristic Algorithm
For Optimal PLA Column and/or Row Folding

Yeong-Yil Yang and Chong-Min Kyung
Department of Electrical Engineering, KAIST

Abstract

A threestep heuristic algorithm for PLA column
folding and row folding of column-folded PLA is pre-
sented, which is significantly faster than the earlier works
and provides nearly optimal results. The three steps are
i) min-cut partition of vertices in the column (or row)
intersection graph, ii) determination of products’ order
using Fiduccia’s min-net cut algorithm, and iii) head-
tail pairing for column folding, while some heuristics are

" proposed for deciding row folding pairs. The time com-
plexity of this algorithm is O(n®logn) compared to the
O(n?) — O(n?) of the earlier works.!#13I1%] For a test PLA
with 23 inputs, 19 outputs and 52 products, the number
of column folding pairs obtained using this algorithm is
20 which is optimal, as compared to 17 in a previous
work.13

1. Introduction

In the PLA folding, we allow inputs and/or outputs
to arrive at either top or bottom of the PLA, so a physical
column can be shared between a pair of inputs or cutputs
but not between an input and output. The PLA folding
problem has been proven to be NP-complete,!!] and sev-
eral heuristic algorithms!?l!% have been developed which
find folding pairs one by one. The PLA folding results
thus obtained are only locally optimal and dependent on
the selection order of the folding pairs. On the other
hand, branch and bound algorithm/4ll5! can find optimal
solutions theoretically, but the algorithm’s time complex-
ity cannot be predicted because of the backtracking.

In this paper, we propose a fast and near-optimal
heuristic algorithm for minimizing the area of the PLA
by means of simple column folding/® and row folding of
the column-folded PLA.[?I5] This algorithm can escape
from the local minima by simultaneocusly determining the
globally optimal positions of each row (or column) in
PLA column (row) folding using min-cut partition!® and
min-net cut partition!”] algorithms. An algorithm called
head-tail pairing is finally used for finding column folding

pairs among many candidate pairs, which can be easily
proven to be optimal in terms of the number of folding
pairs generated. Moreover, the proposed algorithm has
O(n? log n)-time complexity due to the use of Kernighan-
Lin algorithm,!®} which is lower than the O{n3)i%13] —
O(n*)!9)-time complexity of the earlier algorithms.

2. Simple Column Folding
2.1 Min-Cut Bi-Partition of Input/Output Columns

Two columns ¢; and ¢; are disjoint if there are no
rows which have connection with both ¢; and ¢; in the
personality matrix. Let R(c;) be the set of rows which
have connection with column ¢;. Column intersection
graph G = (V, E) has been proposed,!?! where the ver-
tices are the one-to-one correspondence with the columns
of the personality matrix of the PLA. The set F is defined
as E = {e = (vi,v;)|R(c;)NR(c;} # ¢}. In column-folded
PLA, two inputs (and/or outputs) that share a column
arrive from different directions, top or bottom. Inputs
(and/or outputs) can be classified into two groups, one
arriving from the top (upper group) and the other arriv-
ing from the bottom(lower group).

Fig. 1(a) shows the personality matrix of an ex-
ample PLA whose column intersection graph is shown
in Fig. 1(b). The vertices on the column intersec-
tion graph are partitioned into two groups of the same
size, upper group and lower group using the min-cut
algorithm.!8! Fig. 1(c) shows a bipartite column inter-
section graph, where shown are the edges between two
groups, {I1,1s,I5,01,03} and {l, 14, L5, 02,04, 05}

2.2 Product Order Determination Using Min-Net Cut
Algorithm

The PLA personality matrix can be modeled as a
network by noting that each column ¢; corresponds to
a net n; and each row r; corresponds to a cell m;. In
this network model, a net n; has connection with cells
which represent rows in R{c;). Dummy cells, myo, and
Mpottom, 8re introduced to the network model such that

-591-

-

L

[
)

L

ﬁ“c:a"uﬁ"u

=

LWl I3 15T 0,0,050405

Fig.1(n) Personality matrix of the PLA

Fig. 2 A nctwork model

nets which represent columns of the upper group have
additional connection with Myop and nets which represent
columns of the lower group have additional connection
with Mygeom. A network model corresponding to the
product line arrangement of Fig. 1(a} with the column
bi-partition of Fig. 1(c) is shown in Fig. 2(a).

Cells from m, to mg of the above models are linearly
ordered by the min-net cut algorithm!?! which minimizes
the total number of net cuts at all cut lines between each

consecutive cells. In ordering the products, the positions
of myop and Mpoeeom are fixed, and other cells are succes-
sively partitioned into two subsets of < 1 size difference
until the size of each subset is 1. Final result of product
ordering is shown in Fig. 2(b).

2.3 Head-Tail Pairing

With the positions of each product line determined,
we define the l-value and u-value as follows:

Definition) The lower extreme y-coordinate value of an
input or output column in the upper group among
the y-coordinate values of all cross-points of the col-
umn in PLA personality matrix is defined as l-value.
Similarly, u-value of a column in the lower group
denotes such upper extreme y-coordinate value.

The l-values of inputs {outputs) in the upper group
and the u-values of inputs (outputs) in the lower group
are sorted separately in non-increasing order and inserted
into A-list and B-list, respectively. The so-called head-
tail pairing, which can be easily shown to be optimal in
terms of the number of folding pairs generated, performs
pairing the elements at the front of the A- and B-list if
lvalue of the element in the A-list is greater than u-value
of the element in the B-list. If paired, they are popped
out from the A- and B-list. Otherwise, only the element
in the B-list is popped out, and the similar pairing proce-
dure is performed until either A- or B-list becomes empty.
Final result of the PLA column folding is shown in Fig.
3.

Iy Is Iy 0, 0;

Py

I)

P

P

Ps j\

0RO ’
14]2 16 640265

Fig. 3 Personality matnx of columo-folded PLA

3. Row Folding of Column Folded PLA

3.1 Products Bipartition and Column Order Determina-
tion

The row folding of column-folded PLA is similar to
the simple column folding mentioned in section 2 up to
and including the second step if some modifications are
made. Min-cut and min-net cut algorithms are similarly
applied to determine the order of the folded or unfolded
columns from left to right. The third step of deciding
folding pairs in the row folding is different from that of
column folding due to the positional constraint between
the product lines set by the column folding.

~-592-

198814 WK - BF LY

BiikEg wWX%® 88/7

3.2 A Heuristic for Finding Row Folding Pairs

In the column folding, if two columns ¢; and ¢; are
an ordered column folding pair, the rows in R(¢;) should
be above the rows in R(c;). Row constraint graph,i?!
D(V, A) represents the constraints on the relative posi-
tions of rows due to the column folding. In the row con-
straint graph, D(V, A}, V represents the set of vertices
(rows}; and A represents a set of directed edges {con-
straints on the relative positions of rows) A = {(v;,vy)
|v: € R(ec),v; € R{cs},(circi) € F}, where F is the set
of colurmn folding pairs. Row constraint graph is a dag
(directed acyclic graph). A salient feature of the head-
tail pairing used for column folding is that the number of
directed edges in the row constraint graph is minimized,
because it is likely that the column having many cross~
ings with the product lines becomes a folding pair with
the column with having few crossings with the product
lines, and vice versa.

Continuing with the example of Fig. 3, products
P1, P2, P4 come from the left and products ps, ps, ps come
from the right as the result of min-cut partition. Fig.
4(a) shows the row contraint graph having directed edges
to represent the column folding in Fig. 3. Row constraint
graph can be partitioned into two separate graphs by
deleting the edges connecting two groups. Reduced row
constraint graph is obtained as in Fig. 4(b), where the

P

+
[
i
T
t
+

Fig. 4{n) Row constraint graph

;

P H 6
1]
)
'
'

P H P3
]
'
)

Py ! P s
)

Fig 4(b) Reduced row constraint graph

[l
¢
4
+
'

[}
'
]
) s
i

Fig. 4(c) Row folding graph

constraints on the relative vertical positions among the
product lines in each group are separately shown as di-
rected edges. Finally, the row folding graph shown in
Fig. 4(c) is formed by connecting all foldable pairs by
undirected edges. Following is an algorithm for finding
row folding pairs using the row folding graph.

Step 1) Set ACT-VERTEX, ACT-EDGE and FOLD-
LIST empty. Insert vertices whose in-degree
dp(v) is zero into ACT-VERTEX.

Step 2) Insert edges whose ends are in ACT-VERTEX
into ACT-EDGE.

Step 3) If ACT-EDGE is empty, select vertex v; such
that the number of vertices in ACT-VERTEX
having a directed path to vertex v; is minimal;
insert v; into ACT-VERTEX and go to step 2.

Step 4) Select an edge from the edges in ACT-EDGE
according to the edge selection criteria and move]
it into FOLD-LIST. Insert the child vertices of
ends of the selected edge into ACT-VERTEX.
If ACT-VERTEX is empty, then STOP, else go
to step 2.

Following are the edge selection criteria in the order of
priority.

i) Select an edge such that the number of vertices in
ACT-VERTEX which have a directed path to the
ends of the edge is minimum.

ii} Select an edge joining two vertices (rows) with mini-
mal difference of extreme values. Edges correspond-
ing to the row folding pairs {v;,vx) and {v;, v;) are
selected as shown in Fig. 5(a).

ili} Select an edge which connects to a vertex of degree
1. Edge a is selected before b as shown in Fig. 5(b).

' ‘
] 1
1 1
] i
']
+)
= D
‘ s [
' ' [
V 1 o
]] 1y 1
v
J I ' «:
] ' LA &
)] L]
N |
D S T Vi
1 4 (R
) i LI
) ' o
]) LI 1
() [
(@)
3
'
'
)
]
;
]
€™
)
1
v; .
! [vl
'
a
1
[Vi
]
]
¢
)

(b)

Fig. 5 Edge sclection sequence

-593-

PLA o =t ¢ #d A3l4-S 27903 3xbA Felad dnzls
Fig. 6 shows the result of PLA row folding of column
folded PLA according to this procedure. 'J:o ! 0|,p nfa I 100000 1,01, 0,0 "[’0 oo le !
r
0, I, Iy 03 Is r - X X
' ’” jk
’."
P2 7 K—Ps "o ¥ ;
Py £ Py Z: R | :‘___
Py ﬁ—)& Sttt —
P, / Lo 0 e—i 2 x:—;i\
VAN Py 2 _—__j_
P
P 4 r.:_*e TLF R _\,—* oo
s P, X T | P
r T N + ,.:
O, I, Is O I, Os A . AN Py
. P ;}X ﬂ“
Fig. 6 Result of row folding of column-folded PLA ﬁ . 9L—I—9 7,
, i %
4. Experimental Results and Conclusions :: i::t—? e % i "o
P 1.
The proposed algorithm for PLA column folding and 2; OO “
row folding of column-folded PLA was implemented in C I': ;] N
on MV10000 running on DG/UX. Table 1 shows the re- f, »]
sults of simple column folding. In ref. (3], the number ’ o
of column pairs was 17 for the PLA #5 in the Table 1, £u
compared to 114+9=20 folding pairs in our result, which o —
is optimal for this PLA. 16 or 17 folding pairs was ob- Py X
tained in ref. [9] using O(n%)-time complexity algorithm r"_;f | T T
for the PLA #4 in Table 1, whereas our algorithm with 290 00wl 01050 k010sl Ol s
O(n?log n)-time complexity obtained 16 folding pairs in
1.9 sec CPU time. The results of row folding of column- . .
folded PLA are shown in Table 2. Fig. 7 shows the Fig. 7 Row folding of column-folded PLA
result of PLA #2 in Table 2. In conclusion, we pro-
posed a fast heuristic PLA folding algorithm applicable References

for column folding and row folding of column-folded PLA,
which yields nearly optimal results for almost all exam-

ples tried.

PLA Size Results
no {|In/Out_| Product | Sparsity ||1FP | OFP | CPU(sce)
1 10/10 14 18.6 S S 0.9
2 1] 20120 16 18.0 10 8 1.6
3 2317 21 23.6 9 8 2.1
4 23/15 21 20.4 11 S 1.9
5 2319 52 12.0 11 9 5.0
6_|] 49725 30 19.1 24 1l 4.6
7 64/50 80 17.2 32 25 259
Table 1. Examples of simple columa folding.
Sparsity : percentage of X's among
whole grid points in the PLA matrix
IFP : number of input folding pairs
OFP : number of output folding pairs
PLA Size Results
[no {1In/OQut | Product | Sparsity ||IFP | OFP | PFP | CPU(sec) |
1 1111 15 15.8 5 S 6 1.1
2 22/19 50 10.2 11 9 14 8.7
3 21/18 52 10.5 10 9 15 9.2
4 27/23 60 9.1 13 11 15 113

Tablc 2. Examples of row folding of column-folded PLA
PFP : number of product linc folding pairs

-594-

ful

(2]

(3l

4

(s}

(el

v

(7]

8] Q

(9l

G.D. Hachtel, A. R. Newton, and A. L. Sangiovenni—
Vincentelli, “Some results in optimal PLA folding,”
Proc. Int. Circuits and Comput. Conf. pp. 1023—
1027, Oct. 1980))
G.D. Hachtel, A. R. Newton, and A. L. Sangiovanni-
Vincentelli, “Techniques for programmable logic ar-
ray folding,” Proc. 19th Design Automation Confer-
ence, pp. 147-155, 1982, . .
G. D. Hachtel, A. R. Newton, and A. L. Sangiovanni-
Vincentelli, “An algorithm for optimal PLA fold-
ing,” IEEE Trans. Computer-Aided Design CAD-1,
pp. 63-76, Jan. 1982.

W. Glass, “A depth-first branch and bound algo-
rithm for optimal PLA folding,” Proc. 19th Design
Automation Conference, pp. 133-140, 1982.

J. L. Lewandowski and C. L. Liu, “A branch and
bound algorithm for optimal PLA folding,” Proc.
21st Design Automation Conference, pp. 426433,
1984.)

B. W. Kernighan, S. Lin, “An Efficient Heuristic
Procedure for Partitioning Graphs,” Bell System Tech
nical Journal vol.49, pp. 201-307, Feb. 1970.

C. M. Fiduccia and R. M. Mattheys, “A Linear-Time
Heuristic for improving Network Partitions,” Proe.
19th Design Automation Conference, pp. 175-181,
1982.

ingjian Yu and Omar Wing, “INTERVAL-GRAPH-
BASED PLA FOLDING,” Proc. Int’l Symposium
on Circuits And Systems, pp. 1463-1466, 1985.

S. Y. Hwang, R. W. Dutton, T. Blank, “A Best First
Search Algorithm for Optimal PLA Folding,” IEEE
Tyans. Computer-Aided Design CAD-5, pp. 433-
442, Jan. 1986.

