The printed circuit board (PCB) can be used only 2 layers of front and back. Therefore, the wiring line segments are located in 2 layers without crossing each other. In this case, the line segment can be appear in both layers and this line segment is to resolve the crossing problem go through the via. The via minimization problem (VMP) has minimum number of via in layout design problem. The VMP is classified by NP-complete because of the polynomial time algorithm to solve the optimal solution has been unknown yet. This paper suggests polynomial time algorithm that can be solve the optimal solution of VMP. This algorithm transforms n-line segments into vertices, and p-crossing into edges of a graph. Then this graph is partitioned into 3-coloring sets of each vertex in each set independent each other. For 3-coloring sets $C_i$, (i=1,2,3), the $C_1$ is assigned to front F, $C_2$ is back B, and $C_3$ is B-F and connected with via. For the various experimental data, though this algorithm can be require O(np) polynomial time, we obtain the optimal solution for all of data.
본 논문에서는 기존 복셀 칼라링 기법에서의 색상 일관성에 대한 문턱값 문제를 해결하기 위한 개선된 복셀 칼라링 기법을 제안하였다. 제안 기법에서는 표면 복셀에 대한 색상 일관성의 문턱값을 내부 복셀의 색상 일관성 값으로 대체함으로써 복셀 칼라링의 반복 회수가 증가함에 따라 개별 표면 복셀에 대한 최적의 문턱값을 찾아가도록 하였다. 또한 그래프 절단 기법을 적용하여 주위 복셀을 제거 판단에 함께 고려함으로써 표면 잡음을 감소시켰다.
본 논문은 지금까지 NP-완전인 난제로 알려진 정점 색칠 문제를 선형시간 복잡도로 해결한 알고리즘을 제안하였다. 제안된 알고리즘은 그래프 G=(V,E)의 최소 채색수 ${\chi}(G)$=k를 결정하기 위해 사전에 k값을 알지 못한다는 가정에 기반하고 있다. 단지 주어진 그래프를 독립집합 $\overline{C}$와 정점 피복 집합 C로 정확히 양분하여 $\overline{C}$에 색을 배정하는 방법을 적용하였다. 독립집합 $\overline{C}$의 원소는 ${\delta}(G)$인 정점 ${\upsilon}$가, C의 원소는 정점 ${\upsilon}$의 인접 정점들 u가배정된다. 축소된 그래프 C는 다시 $\overline{C}$와 C로 양분되며, 이 과정을 C의 간선이 없을 때까지 수행한다. 26개의 다양한 그래프를 대상으로 제안된 알고리즘을 적용한 결과 정점 ${\upsilon}$를 선택하는 횟수는 정점의 수 n보다 작은 값을 나타내었으며, ${\chi}(G)$=k를 찾는데 성공하였다.
데이타 및 음성 등의 통신에서 무선 통신의 비중은 날로 증가하고 있다. 그러나 무선 통신에서는 유선통신에 비해 여러 가지 자원의 제약을 받는다. 컴퓨터, PDA, 이동통신기기 등 급격히 증가하는 무선 단말기의 증가에 따른 통신량 수요를 충족하기위해 제한된 자원을 보다 효율적으로 사용해야 한다. 무선 통신에 있어 효율성이 필요한 자원중의 하나가 주파수 이다. 효율적 주파수 사용을 위한 주파수 할당 문제에 관한 연구는 현재 활발히 진행되고 있다. 그러나 대부분의 주파수 할당 문제가 NP-Complete의 어려운 문제로 실험적 연구를 통한 접근과 함께 이에 대한 이론적 이해 또한 필요하다. 주파수 할당 문제의 이론적 연구 중 셀룰러 위상구조에서의 크로마틱 대역폭 문제의 하한 값이 $O(k^2)$로 알려져 있다. 본 논문에서는 셀룰러 위상구조에서의 크로마틱 대역폭 주파수 할당 문제의 하한 값으로 기존에 알려진 $O(k^2)$보다 향상된 하한 값 $O(k^3)$을 제시하여, 주파수 할당 문제의 보다 정확한 이론적 이해를 제시하였다.
In this paper, we consider wavelength assignment problem (WAP) in Wavelength division multiplexed (WDM) unidirectional optical telecommunication ring networks. We show that, even though WAP on unidirectional ring belongs to NP-hard, WAP can be exactly solvable in real-sized WDM rings for near future demand. To accomplish this, we convert WAP to the vertex coloring problem of the related graph and choose a special integer programming formulation for the vertex coloring problem. We use a column generation technique in a branch-and-price framework for the suggested formulation. We also propose some generic heuristics and do the performance comparison with the suggested optimization algorithm.
본 논문은 NP-완전 문제인 간선 색칠과 그래프 부류 결정 문제를 동시에 해결하는 O(E)의 다항시간 알고리즘을 제안하였다. 제안된 알고리즘은 최대차수-최소차수 정점 쌍 간선을 단순히 선택하는 방법으로 간선 채색수 ${\chi}^{\prime}(G)$를 결정하였다. 결정된 ${\chi}^{\prime}(G)$는 ${\Delta}(G)$ 또는 ${\Delta}(G)+1$을 얻는다. 결국, 알고리즘 수행 결과 얻은 ${\chi}^{\prime}(G)$로부터 ${\chi}^{\prime}(G)={\Delta}(G)$이면 부류 1, ${\chi}^{\prime}(G)={\Delta}(G)+1$이면 부류 2로 분류할 수 있다. 또한, 미해결 문제로 알려진 "최대차수가 6인 단순, 평면 그래프는 부류 1이다."라는 Vizing의 평면 그래프 추정도 증명하였다.
본 논문은 지금까지 미해결 문제로 알려진 정점 색칠 문제에 대한 Hadwiger 추측의 반증을 제시하였다. Hadwiger 추측은 "모든 $K_k$-minor free 그래프는 k-1개의 색으로 칠할 수 있다. 즉, $K_k$-마이너를 얻으면 ${\chi}(G)=k$이다." Hadwiger 추측을 적용하여 정점 색칠을 할 경우, 먼저 NP-완전 (NP-complete)인 $K_k$-마이너를 구하여 ${\chi}(G)=k$를 결정하고, 다시 NP-완전인 정점 색칠 문제를 풀어야 한다. Hadwiger 추측을 반증하기 위해 본 논문은 정점 색칠의 정확한 해를 O(V)의 선형시간으로 구하는 알고리즘을 제시하였다. 제안된 알고리즘은 그래프의 최소 차수를 가진 정점을 최대독립집합 (MIS)으로 하고, MIS 정점의 인접 정점 간선을 삭제한 축소된 그래프에 대해 이 과정을 반복하면서 하나의 색을 가진 MIS를 얻는다. 다음으로 MIS 정점의 간선을 삭제한 축소된 그래프에 대해 동일한 과정을 수행하여 MIS의 개수가 정점 채색수 ${\chi}(G)=k$가 되는 해를 얻는다. 제안된 알고리즘을 적용하여 NP-완전 문제인 완전 색칠 (total coloring) 채색수 ${\chi}^{{\prime}{\prime}}(G)$의 해를 구하는 알고리즘을 제안하였다. 제안된 알고리즘을 $K_4$-마이너 그래프에 적용한 결과 ${\chi}(G)=4$가 아닌 ${\chi}(G)=3$을 얻었다. 결국, Hadwiger 추측은 모든 그래프에 대해 적용되지 않음을 알 수 있다. 제안된 알고리즘은 마이너를 구하지 않으며, 주어진 그래프에 대해 직접 ${\chi}(G)=k$인 독립집합 마이너를 구하여 각 독립집합 정점들에 동일한 색을 배정하는 단순한 방법이다.
The ring routing and wavelength assignment problem arose in the planning of optical communication networks which use WDM rings. Traffic demands are given for each pair of nodes in an ring : each demand must be routed one of the two possible connections round the ring and the wavelength assignments must be made so that there are no conflicts : that is. no two connections whose routes share a link can be assigned the same wavelength along that link. The objective is to minimize the number of used wavelengths. We propose the local optimal routing for the problem and show that there always exists an optimal solution satisfying it. Furthermore we suggest a new lower bound for the problem and show that it is very efficient for the worst case example.
본 논문은 유전 알고리즘을 활용하여 저궤도 위성 네트워크(LEO)와 다른 서비스 간의 주파수 공존 문제에 대한 해결 방안을 제시한다. LEO 위성을 이용하는 비지상 네트워크(NTN)는 동적 특성을 가지고 있으며, 전파 규칙에 따라 타 서비스와 주파수를 공유할 때 발생할 수 있는 간섭 문제를 해결해야 한다. 본 연구에서는 3GPP에서 제안한 NTN 운용 시나리오를 기반으로 간섭 시나리오를 모델링하고, 유전 알고리즘을 통해 NTN이 지상 서비스를 보호하면서도 최소한의 서비스 품질(QoS)를 만족하는 최적의 채널 할당방안을 도출하였다. 시뮬레이션 결과, 제안된 방법은 기존의 고정 할당 방식이나 그래프 컬러링 방식보다 우수한 성능을 보였으며, 효율적인 주파수 공유가 가능함을 확인하였다.
RFID 시스템에서 리더간 간섭은 일정한 서비스 영역에서 제한된 주파수를 사용하기 때문에 발생하며 수동형 태그의 가독율을 떨어뜨리는 주요 원인이 된다. 그러므로 제한된 주파수 자원 환경에서 가독율을 최대화하려면 리더간 주파수 간섭을 최소화시켜야 한다. 본 논문에서는 RFID 리더간 주파수 간섭 최소화 문제를 FDM/TDM 혼합방식의 제약만족문제로 모델링하고 기존의 백트래킹 탐색 알고리즘을 적용하여 각각의 리더에게 최적의 채널을 할당한다. 제약 만족 문제의 해를 구하기 위해서 백트래킹을 이용한 깊이우선탐색을 실행하는데 이 때 탐색되는 노드의 순서를 효과적으로 배열하는 변수 순서화 방법이 중요하다. 본 논문의 실험에서 적용된 변수 순서화 알고리즘들은 그래프 채색에 효과적인 것으로 알려져 있다. 제안한 제약만족문제 모델의 성능을 입증하기 위하여 수동형 UHF RFID 시스템 환경에서 시뮬레이션하여 간섭조건을 만족하면서 각각의 리더에게 최적의 채널을 할당한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.