• Title/Summary/Keyword: Granite region

Search Result 112, Processing Time 0.03 seconds

Impact Resistance of UHPC Exterior Panels under High Velocity Impact Load (고속충격을 받는 외장 UHPC 패널의 내충격성능)

  • Kang, Thomas H.-K.;Kim, Sang-Hee;Kim, Min-Soo;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.455-462
    • /
    • 2016
  • This experimental study aims to evaluate the impact performance of UHPC exterior panels through high velocity impact tests. The impact performance of UHPC was compared with that of granite in terms of panel thickness, and strain histories were recoded on the rear face of panel specimens. The UHPC turned out to be a good exterior facade material, because the appearance of UHPC is natural enough and impact performance was superior to granite. After colliding, compression pulse reached to the rear face but that pulse was reflected in tension pulse with respect to the free point outside the rear face of the panel. This tension pulse caused the scabbing from the rear side, as the strain histories on the rear face showed three different regions as compression region, steady region and tension region. The shear plug deformation by shear force also was one of the primary reasons for the scabbing based on the observation. Therefore, the scabbing seemed to be affected by both tension and shear forces.

Non-destructive Analysis of Material Characteristics and Provenance of Granite Monuments: The Cases of Stupa for National Preceptor Wongong at Geodonsa Temple and Five-story Pagoda at Cheonsusa Temple (비파괴 분석을 이용한 화강암류 석조 문화재의 부재특성과 산지추정: 거돈사 원공국사 승묘탑과 천수사 오층석탑을 중심으로)

  • Kim, Yonghwi;Choi, Seongyu;Seo, Jieun;Kang, Jeonggeuk;Lee, Jonghyun;Jo, Yeontae
    • Conservation Science in Museum
    • /
    • v.19
    • /
    • pp.19-40
    • /
    • 2018
  • Most stone monuments in Korea are made from the granitoids found extensively throughout the nation. To identify the provenance of the stone materials, this study carried out comprehensive analyses of the occurrence, physical properties, mineralogy, and chemical composition of Stupa for National Preceptor Wongong at Geodonsa Temple and Five-story Pagoda at Cheonsusa Temple, both located in the Gangwon region. Their features were compared with those of granite from Wonju City near the sites of the two monuments. Stupa for National Preceptor Wongong is composed purely of two-mica granite, whereas Five-story Pagoda was made from both two-mica and biotite granites. The occurrence and magnetic susceptibility of the two granite monuments generally coincide with those of granite from Wonju. When selecting materials for the restoration of stone monuments, it is deemed necessary to carry out a field survey on granite in areas adjacent to the locations of the stone monuments subject to restoration.

Development and Application of Geological Field Study Sites in the Area of Igneous Rocks (화성암 지역의 야외지질학습장 개발 및 적용)

  • Kim, Hwa Sung;Ham, Ho Shik;Lee, Moon Won
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.274-285
    • /
    • 2013
  • The purpose of this study was to develop geological field study sites for learning topography and geology of the area with igneous rocks, specifically in Duibaejae volcanic edifice and Seonang-bawi that were distributed in Goseong-gun, Gangwon-do area. As a follow up, we conducted a study to examine the effect of the study sites when applied to high school freshmen Earth science course. The study proceeded based on the Orion's model in the order of preparatory unit, field trip, and summary unit. The geological field study sites were developed based on the geological study elements presented in the Korean Earth science curriculum. Before the field trip, students simply memorized factual knowledge on minerals, rocks and etc., and showed very low level of understanding on the formation process of the region that was distributed with granite and basalt. Especially, their understanding showed that granite and basalt were formed from the same magma at the same time. After the field trip, they increased in-depth level of understanding about minerals, rocks, and geological structures, but were not able to explain the topographical characteristics of the two rocks because they did not recognize the times of the creation of granite and basalt. The reason is that they have learned the simple concept of the process of forming granite and basalt in their middle school, but that they have not learned the meaning of the difference between two the geological eras when each of the two rocks, granite and basalt, were formed.

Fluorine Distribution and Attenuation of Groundwater within Limestone and Granite from Keumsan-Wanju Fluorite Mineralized Zone (금산-완주지역 형석광화대내 석회암 및 화강암지역 지하수의 불소분포 특성 및 저감방안)

  • Hwang, Jeong
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.105-117
    • /
    • 2001
  • The characteristics of hydrogeochemistry and fluorine distribution in drinking groundwater from limestone and granite were studied in the Keumsan-Wanju area, where major important fluorite-deposits are distributed. The hydrochemical properties of groundwater from studied area arc commonly characterized as $Ca-HC0_3$ water type. However, some of the groundwater samples collected from Jurassic and Cretaceuus granites belong to $Ca-Na-HC0_3 and Na-HC0_3$ type, respectively. The contamination of drinking groundwater by minewater from the nearby fluorite deposits is not found yet. However, groundwater having high F contents up to 1].4 mgll, which is higher than the drinking water limit, is found from the wells located in Cretaceous granite. The tluorine contents in groundwater generally increase with increasing well depth. The concentrations of F in the groundwater show a positive relationship with the values of Na, $HC0_3, Cl. Si0_2$, pH, whereas a negative relationship with Ca. The positive correlation of F-concentrations to major elements ($Si0_2$, Na, CI) and trace elements (Li, B, Rb) may suggest that the groundwater come from the decomposition of tluoride-bearing silicate minerals within highly differentiated granitic rocks, Therefore, wells for drinking water should not be developed or should be drilled within shallow level in the Cretaceous granite region to reduce the F contents in the groundwater.

  • PDF

A Study on the Indexes and Properties of Mechanical Weathering to Granite Distributed in Korea (화강암의 풍화산물에 대한 기계적 풍화지수의 특성에 관한 연구)

  • Rheem, Chong-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.2
    • /
    • pp.99-111
    • /
    • 1993
  • The transformation of rocks into unconsoli-dated debris is the prime geomorphic processes including weathering and soil forming process. In these processes, rocks tend to be unconsol-idated debris with small particles. Particularly, typical granite is more likely affected by weathering, since the rock consists of quartz, feldspar and mica that can be easily coarse-grained and well jointed without bedding. The purposes of this study are to clarify the index and properties of mechanical weathering that contributed to transformation of granite distributed in Korea. A total of seventy-three samples of weathering products of granite in Korea were collected during the three-year period, March 30, 1989 to February 21, 1992. The prticle analysis was performed for clay, silt and sand using Sieve and Hydrometer. The results of the analysis are as the followings: First, soil textures in the study area are included seven categories of textures as C, CL, SCL, Sil, SL, LS, and S. Among these textures, the most frequent soil texture were SL, S and SCL in order. Second, the weathering products of granite are crumbled by weathering and hydrothermal. Clay texture consisted of fine materials seems to be influenced by hydrothermal, while Sand texture composed of coarse materials, seems to be significantly influenced by weathering. Third, the index of mechanical weathering by region indicates that Hawngdeung(1) is the lowest as 2.37 and the index by soil texture shows that Clay texture is the lowest as 2.46. Forth, the regression analysis of MW showes that sand/clay variable is the most significant variable. Finally, pedochemical weathering is prevailed on the clayey gruss and geochemical weathering is on the gruss and shattering is on the weathered rock, strongly, but the fine materials in some sites were formed by argillation of hydrothermal.

  • PDF

A Study on the Correlation between Uniaxial Compressive Strength of Rock by Elastic Wave Velocity and Elastic Modulus of Granite in Seoul and Gyeonggi Region (서울·경기지역 화강암의 탄성파속도와 탄성계수에 의한 암석의 일축압축강도와의 상관성 연구)

  • Son, In-Hwan;Kim, Byong-kuk;Lee, Byok-Kyu;Jang, Seung-jin;Lee, Su-Gon
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.249-258
    • /
    • 2019
  • Purpose: The purpose of this study is to attain the correlation analysis and thereby to deduce the uniaxial compressive strength of rock specimens through the elastic wave velocity and the elastic modulus among the physical characteristics measured from the rock specimens collected during drilling investigations in Seoul and Gyeonggi region. Method: Experiments were conducted in the laboratory with 119 granite specimens in order to derive the correlation between the compressive strength of the rocks and elastic wave velocity and elastic modulus. Results: In the case of granite, the results of the analysis of the interaction between the compressive strength of a rock and the elastic wave velocity and elastic modulus were found to be less reliable in the relation equation as a whole. And it is believed that the estimation of the compressive strength by the elastic wave velocity and elastic modulus is less used because of the composition of non-homogeneous particles of granite. Conclusion: In this study, the analysis of correlation between the compressive strength of a rock and the elastic wave velocity and elastic modulus was performed with simple regression analysis and multiple regression analysis. The coefficient determination ($R^2$) of simple regression analysis was shown between 0.61 and 0.67. Multiple regression analysis was 0.71. Thus, using multiple regression analysis when estimating compressive strength can increase the reliability of the correlation. Also, in the future, a variety of statistical analysis techniques such as recovery analysis, and artificial neural network analysis, and big data analysis can lead to more reliable results when estimating the compressive sterength of a rock based on the elastic wave velocity and elastic modulus.

Resilient Modulus of Weathered Granite Soil in the Central Part of Korea (화강암풍화토의 동탄성계수에 관한 연구 -중부지역을 중심으로-)

  • 김주한;이종규
    • Geotechnical Engineering
    • /
    • v.6 no.1
    • /
    • pp.35-42
    • /
    • 1990
  • Over the years, most pavement designs based on soil strength and permanent strain are almost independent of soil elasticity. However, it was found that plasticity and elasticity of soil have both effected on the failure of pavement structures. The elasticity of soil, hence, using the resilient modulus is reflected for recent pavement design. Although the current AASHTO specifications(1986) for pavement design had changed the soil support value to the resilient modulus, triaxial devices conducting the resilient modulus test have not been fully equipped in a great majority of laboratories. Thus, in the present work, such a resilient modulus is usually derived(from CBR, K values, etc.) by estimating equations. The purpose of this study is to evaluate the resilient modulus of weathered granite soils sampled from 4 points of the central region of Korea by means of AASHTO T 274-82. According to this, some empirical equations for predicting that of the weathered granite soil are proposed and then, the relationship to convert CBR into the resilient modulus is developed.

  • PDF

Geochemistry of the Daebo Granitic Batholith in the Central Ogcheon Belt, Korea : A Preliminary Report (중부 옥천대에 분포하는 대보 화강암질 저반의 화학조성 : 예비보고서)

  • Cheong, Chang-Sik;Chang, Ho-Wan
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.483-493
    • /
    • 1996
  • The tectonic environment and source characteristics of the Daebo granitic batholith in the central Ogcheon Belt were investigated based upon major and trace element geochemistry. The batholith is comprised of three granite types; a biotite granite (DBBG), K-feldspar megacryst-bearing biotite granite (DBKG), and a more mafic granodiorite (DBGD). The variations of Na and K in the granites can not be explained by simple fractional crystallization from the same primary magma. The irregular behavior of these alkali elements indicates a variety of source materials or incomplete mixing of different source materials. The large ion lithophile (LIL) element enrichment and low Ta/Hf ratios of the granites are typical characteristics of normal, calc-alkaline continental arc granitoids. Based upon REE patterns of the granites, it seems to be unreasonable to regard the felsic DBBG as a late stage differentiate formed by residual melts after the fractionation of major constituent minerals of the more mafic DBGD. Inconsistent variations in ${\varepsilon}_{Nd}(t)$ and LIL element concentrations of the granites preclude a mixing model between primitive melt and LIL element-enriched upper crustal materials. The irregular geochemical variation of the granites is taken to be largely inherited from an already heterogeneous source region.

  • PDF

Poly-metamorphism of Pre-Cambrian to Paleozoic metasedimentry rocks in Janggunbong area, Korea-Crustal evolution and environmental geology of the central part of the North Sobaegsan Massif, Korea- (장군봉 일대 선캠브라아대.고생대 변성퇴적암류의 다변성작용-북부 소백산육괴의 중앙부 지역의 지각진화와 환경지질-)

  • 김기영;김형식;오창환;박찬수;강지훈;류영복
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.168-187
    • /
    • 1996
  • In the study area Uanggunbong-Samgunri area), Precambrian metamorphic complex, (Taebacksan gneiss complex, Hyundong gneiss complex, and Taebacksan schist complex) had undergone three different regional metamorphisms at least before Paleozoic. The Paleozoic sediments in the study area also had undergone three different metamorphisms at least. The first is low pressure type regional metamorphism, the second is low pressure type contact metamorphism due to the intrusion of Chunyang granite, and the last is medium pressure type metamorphism caused by thrust in south of Janggunbong area. The first metamorphism formed the prevailing metamorphic zones in the Paleozoic metasediments and the metamorphic grade of the first regional metamorphism increases from the chloritoid zone, through the staurolite zone, garnet zone, staurolite+biotite zone, and to the andalusite+biotite zone. The second metamorphism affected both Pre-Cambrian and Paleozoic metasediments located close to the Chunyang granite. The effect of the contact metamorphism is restricted to the very narrow zone around the granite. The third metamorphism that produced kyanite, is restricted to the very narrow region near the thrust fault in the south of Janggunbong with an E-W trend.

  • PDF

A Geochemical Study on Jindong Granites in Relation to Copper Ore Deposits in Gyeongsang Basin (경상분지내 동광상 관련 진동화강암류에 대한 지화학적 연구)

  • Lee, Jae Yeong;Lee, Jin Kook;Park, Beob Jeong;Lee, In Ho;Kim, Sang Wook
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.161-170
    • /
    • 1994
  • Jindong Granites are plotted mainly in the region of granodiorite~diorite of the Streckeisen's diagram, while Yucheon-Eonyang Granites and Onjonri Granites in the region of monzo-granite and monzo-granite~granodiorite, respectively. Jindong Granites show a differenciation trend of calc-alkaline magma, and its magmatic evolution from intermediate to acidic rocks, which might form mineralizing solution, is consistant with the general path of the Cretaceous granitic rocks including Yucheon-Eonyang Granites and Onjongri Granites. The differenciation index (D.I.) is 35~80 for Jindong Granites, which is lower than 85~95 of Yucheon-Eonyang Granites and is partly overlapped by 67~84 of Onjongri Granites. There is clear difference in content of some major and trace elements between Jindong Granites of Cu province and the other granitic rocks of Pb-Zn and Mo provinces. Between these metallogenic provicnes, Cu content is high in Jindong Granites near Haman-Gunbuk mineralized zone, while Pb and Zn are relatively abundant in Yucheon-Eonyang Granites and Mo in Onjongri Granites. Therefore, Jindong Granites of the Cu province are distinguishable by chemical compositions and their related geochemical characteristics from the other Cretaceous granitic rocks of Pb-Zn and Mo provinces. However, the content of Cu and Cl in biotite is applicable to distinguish a productive phase from a barren phase of Jindong Granites, because Cu and Cl show a trend to be concentrated in biotite of Jindong Gratites in the Haman-Gunbuk mineralized zone.

  • PDF