• Title/Summary/Keyword: Grain Texture

Search Result 349, Processing Time 0.026 seconds

Evaluation of Texture and Mechanical Property on Annealing Condition of Ni-Plated Hybrid Cu Sheet (어닐링처리에 따른 니켈 도금한 하이브리드 동판의 집합조직 및 기계적 특성평가)

  • Lee, Jung-Il;Lee, Joo-Ho;Cho, Kyung-Won;Kim, Kun-Nam;Kim, Gang-Beom;Jang, Tae-Soon;Park, No-Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.3
    • /
    • pp.144-149
    • /
    • 2008
  • It has been reported that copper and copper alloys have a large anisotropy of functional properties such as electrical, thermal and mechanical properties, which means that the texture of polycrystalline alloy should be considered to achieve better properties. In this study, the determination of grain growth orientation and texture formation in the cold-rolled, heat-treated and Ni-plated hybrid copper sheets was investigated. Grain growth direction and texture formation were analyzed by the X-ray pole figure. The influence of texture on the mechanical properties could be quantitatively confirmed by the results from the orientation distribution function and the tensile test. The heat-treated texture in the cold-rolled hybrid copper sheet is also investigated and discussed.

A Brief Review of Some Challenging Issues in Textured Piezoceramics via Templated Grain Growth Method

  • Hye-Lim Yu;Nu-Ri Ko;Woo-Jin Choi;Temesgen Tadeyos Zate;Wook Jo
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.10-15
    • /
    • 2023
  • It is well known that polycrystalline ceramics fabricated via the templated grain growth method along a desired crystallographic direction, generally along [001], exhibits enhanced piezoelectric response. Generally, the piezoelectric properties of textured ceramics depend on the degree of texture, as piezoelectric properties peak in single crystals. Therefore, understanding the relationship between the degree of texture and piezoelectric properties is fundamental. Here, we present state-of-the-art textured piezoceramics by focusing on critical issues such as the quality of templates used for texturing and proper evaluation of the degree of texture analysis. The relationship between the degree of texture and its impact on the properties of textured materials is exclusively defined by the Lotgering factor (L.F.) calculated from the X-ray diffraction profiles. Additionally, we show that L.F. is not a suitable indicator of the degree of texture, contrary to previous interpretations. This statement was further supported by the fact that the true degree of texture can be better quantified by the multiples of random distribution. This argument was justified by comparing the quantitative values of the degree of texture obtained from both methods to those of the piezoelectric charge coefficient of textured and random ceramics.

Microstructure and properties of 316L stainless steel foils for pressure sensor of pressurized water reactor

  • He, Qubo;Pan, Fusheng;Wang, Dongzhe;Liu, Haiding;Guo, Fei;Wang, Zhongwei;Ma, Yanlong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.172-177
    • /
    • 2021
  • The microstructure and texture of three 316L foils of 25 ㎛ thickness, which were subjected to different manufacturing process, were systematically characterized using advance analytical techniques. Then, the electrochemical property of the 316L foils in simulated pressurized water reactor (PWR) solution was analyzed using potentiodynamic polarization. The results showed that final rolling strain and annealing temperature had evident effect on grain size, fraction of recrystallization, grain boundary type and texture distribution. It was suggested that large final rolling strain could transfer Brass texture to Copper texture; low annealing temperature could limit the formation of preferable orientations in the rolling process to reduce anisotropy. Potentiodynamic polarization test showed that all samples exhibited good corrosion performance in the simulated primary PWR solution.

The Study of Copper Liner Micro Structure Control for Shaped Charge (성형작약탄용 구리라이너의 미세조직 제어연구)

  • Chang, Soo-Ho;Park, Kyung-Chae;Kim, Young-Moo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1114-1120
    • /
    • 2011
  • Shaped Charge's penetration performance is depended on the shape of warhead and explosive, liner materials. The liner that manufactured to small homogeneous grain increase the penetration performance and decrease the deviation of penetration performance. This texture is obtained by forging process but, creating the process that remove crack and get small homogeneous grain is very hard. In this study, We success to get the homogeneous small grain texture through appling the most suitable process by DEFORM CODE analysis.

Amorphous Cr-Ti Texture-inducing Layer Underlying (002) Textured bcc-Cr alloy Seed Layer for FePt-C Based Heat-assisted Magnetic Recording Media

  • Jeon, Seong-Jae;Hinata, Shintaro;Saito, Shin
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.35-39
    • /
    • 2016
  • $Cr_{100-x}Ti_x$ amorphous texture-inducing layers (TIL) were investigated to realize highly (002) oriented $L1_0$ FePt-C granular films through hetero-epitaxial growth on the (002) textured bcc-$Cr_{80}Mn_{20}$ seed layer (bcc-SL). As-deposited TILs showed the amorphous phase in Ti content of $30{\leq}x(at%){\leq}75$. Particularly, films with $40{\leq}x{\leq}60$ kept the amorphous phase against the heat treatment over $600^{\circ}C$. It was found that preference of the crystallographic texture for bcc-SLs is directly affected by the structural phase of TILs. (002) crystallographic texture was realized in bcc-SLs deposited on the amorphous TILs ($40{\leq}x{\leq}70$), whereas (110) texture was formed in bcc-SLs overlying on crystalline TILs (x < 30 and x > 70). Correlation between the angular distribution of (002) crystal orientation of bcc-SL evaluated by full width at half maximum of (002) diffraction (FWHM) and a grain diameter of bcc-SL indicated that while the development of the lateral growth for bcc-SL grain reduces FWHM, crystallization of amorphous TILs hinders FWHM. $L1_0$ FePt-C granular films were fabricated under the substrate heating process over $600^{\circ}C$ with having different FWHM of bcc-SL. Hysteresis loops showed that squareness ($M_r/M_s$) of the films increased from 0.87 to 0.95 when FWHM of bcc-SL decreased from $13.7^{\circ}$ to $3.8^{\circ}$. It is suggested that the reduction of (002) FWHM affects to the overlying MgO film as well as FePt-C granular film by means of the hetero-epitaxial growth.

Grain Refinement and Microstructural Instability of an AZ31 Mg Alloy by Severe Plastic Deformation Using ECA Pressing (ECAP 강가공에 의한 마그네슘 AZ31합금의 결정립 미세화 및 미세조직 불안정성)

  • Kim, H.K.;Chung, K.;Hyun, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.3
    • /
    • pp.139-145
    • /
    • 2004
  • Equal channel angular pressing (ECAP) technique had been adapted to the Mg alloy (AZ31) for achieving effective grain refinement through severe deformation. The average grain size of $2.5{\mu}m$ could be obtained after 4 passes. The stability of the ECAPed structure at elevated temperatures was examined by annealing the ECAPed materials over a wide range of temperature between 473 and 748 K. The average activation energy, Q, for static grain growth of 1, 2 and 3 passes was 33.7 kJ/mole (=0.25QL, activation for lattice diffusion). The abnormally low Q value in the lower temperature range may indicate that grain growth occurs in the unrecrystallized microstructure where non-equilibrium grain boundaries containing a large number of extrinsic dislocations exist. The yield stresses of the ECAPed alloys decreased whereas the elongations increased after the ECAP process. These results should be related to the modification of texture for easier slip on basal plane.

Effect of Initial Texture on the Evolution of Warm Rolling Texture and Microstructure in Aluminum Alloy Sheet (알루미늄 판재의 온간압연 집합조직과 미세조직에 미치는 초기 집합조직의 영향)

  • Kim H. D.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.138-141
    • /
    • 2001
  • The evolution of lectures and microstructure during the warm-rolling and subsequent annealing in aluminum 3004 alloy sheets was investigated by employing X-ray texture measurements and microstructure observations. Whereas the typical $\beta$-fiber orientations with the strong Bs-orientation $\{112\}<110>$ formed in the normally cold-rolled specimen, the warm-rolling at $250^{\circ}C$ led to the development of a strong through thickness texture gradient which was characterized by shear texture at the surface layer and rolling textures at the center layer After warm rolling, ultra-fine grains formed in the thickness layer with shear texture components. Upon recrystallization annealing, the $\{001\}<100>$ Cube-texture developed at the expense of normal rolling texture components the rise to the formation of corase recrystallized grains. However, in the layer with shear texture components the continuous recrystallization took place and the fine grain size persisted even after recrystallization annealing.

  • PDF

Development of Microstructure and Texture of AZ61 and AZ80 Magnesium Alloys by Hot Rolling (열간압연에 따른 AZ61 및 AZ80 마그네슘 합금의 미세조직 및 집합조직 발달에 대한 연구)

  • Lee, Ji Ho;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.2
    • /
    • pp.49-56
    • /
    • 2020
  • Magnesium alloy is a metal with high specific strength and light weight, and is attracting attention as a next generation metal for environmentally friendly automobiles and transportation equipment. However, magnesium alloys have a problem of degrading formability due to the basal texture developed during processing, and their application is limited. Although active researches on the control of textures have been conducted in order to minimize this problem, there is a lack of research on the formation of microstructures and textures according to elemental differences. In this study, AZ61 and AZ80 magnesium alloys were selected to investigate the effects of aluminum addition on the microstructure development of magnesium alloys. This research has proven that the increase of the rolling rate results in the decrease of the average grain size of the two alloys, the increase of the hardness, and the increase of the fraction of twins. As shown on this research below, the basal texture developed strongly as the rolling ratio increased. On the other hand, this research also has proven that the two alloys exhibited different texture strength and distribution tendencies, which could be due to the effects of aluminum addition on work hardening, grain size, and twin behavior.

Microstructures and Textures of Electrodeposited Ni/Invar Bimetal (전주도금으로 제조된 Ni/Invar 바이메탈의 미세조직과 집합조직)

  • Kang, Ji Hoon;Seo, Jeong Ho;Park, Yong Bum
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.420-426
    • /
    • 2008
  • By using electrodeposition, we developed a new method to produce Ni/Invar bimetal sheets, which have been used for the present study to investigate the texture evolution during annealing. The grains of electrodeposited Ni were columnar, while those of electrodeposited Fe-Ni alloy were nanocrystalline. These different parts of the bimetal underwent different evolution of textures and microstructures during annealing. In the nanocrystalline Invar, the as-deposited textures were of fiber-type characterized by strong <100>//ND and weak <111>//ND components, and the occurrence of grain growth resulted in the strong development of the <111>//ND fiber texture with the minor <100> // ND components. On the other hand, in the columnar-structured Ni part, the as-deposited <110>//ND fiber texture transformed to the <112>//ND fiber texture due to recrystallization occurring above $550^{\circ}C$. The development of microtextures which took place during annealing in the Ni/Invar interfacial regions was investigated by using the OIM analysis, and discussed in terms of the effect of atomic diffusion across the interfaces.

Texture Profile Analysis of Noodle Strands Using a Texture Analyser Interfaced with an IBM-Compatible Computer (컴퓨터를 이용한 동양식 국수의 물성 측정에 관한 연구)

  • Wan Soo Kim
    • Korean journal of food and cookery science
    • /
    • v.8 no.4
    • /
    • pp.397-403
    • /
    • 1992
  • 국수의 물성 측정에 있어서 기존의 방법들은 많은 시간을 요하고 또한 시간 경과에 따른 국수의 물성값에 오차를 주는 단점이 있다. 컴퓨터의 소프트웨어(Xtra)를 이용한 Texture Analyser로 부터 얻어낸 Texture Profile Analysis (TRA)곡선은 국수의 물성변화를 6∼8개의 상수들을 사용해서 설명할 수 있었다. 이 측정방법은 빠르고 효율적이며 시간을 단축할 수 있었다. 그러므로 국수와 파스타(pasta)의 물성 연구에는 이 방법을 도입할 것을 제시하였다.

  • PDF