DOI QR코드

DOI QR Code

A Brief Review of Some Challenging Issues in Textured Piezoceramics via Templated Grain Growth Method

  • Hye-Lim Yu (Department of Materials Science and Engineering & Jülich-UNIST Joint Leading Institute for Advanced Energy Research (JULIA), Ulsan National Institute of Science and Technology (UNIST)) ;
  • Nu-Ri Ko (Department of Materials Science and Engineering & Jülich-UNIST Joint Leading Institute for Advanced Energy Research (JULIA), Ulsan National Institute of Science and Technology (UNIST)) ;
  • Woo-Jin Choi (Department of Materials Science and Engineering & Jülich-UNIST Joint Leading Institute for Advanced Energy Research (JULIA), Ulsan National Institute of Science and Technology (UNIST)) ;
  • Temesgen Tadeyos Zate (Department of Materials Science and Engineering & Jülich-UNIST Joint Leading Institute for Advanced Energy Research (JULIA), Ulsan National Institute of Science and Technology (UNIST)) ;
  • Wook Jo (Department of Materials Science and Engineering & Jülich-UNIST Joint Leading Institute for Advanced Energy Research (JULIA), Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2022.11.22
  • Accepted : 2023.01.25
  • Published : 2023.01.31

Abstract

It is well known that polycrystalline ceramics fabricated via the templated grain growth method along a desired crystallographic direction, generally along [001], exhibits enhanced piezoelectric response. Generally, the piezoelectric properties of textured ceramics depend on the degree of texture, as piezoelectric properties peak in single crystals. Therefore, understanding the relationship between the degree of texture and piezoelectric properties is fundamental. Here, we present state-of-the-art textured piezoceramics by focusing on critical issues such as the quality of templates used for texturing and proper evaluation of the degree of texture analysis. The relationship between the degree of texture and its impact on the properties of textured materials is exclusively defined by the Lotgering factor (L.F.) calculated from the X-ray diffraction profiles. Additionally, we show that L.F. is not a suitable indicator of the degree of texture, contrary to previous interpretations. This statement was further supported by the fact that the true degree of texture can be better quantified by the multiples of random distribution. This argument was justified by comparing the quantitative values of the degree of texture obtained from both methods to those of the piezoelectric charge coefficient of textured and random ceramics.

Keywords

Acknowledgement

This research was supported by the Leading Foreign Research Institute Recruitment Program (No. 2017K1A4A3015437) through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT.

References

  1. A. M. Manjon-Sanz and M. R. Dolgos, "Applications of piezoelectrics: Old and new", Chem. Mater., Vol. 30, No. 24, pp. 8718-8726, 2018. https://doi.org/10.1021/acs.chemmater.8b03296
  2. W. Heywang, K. Lubitz, and W. Wersing, Piezoelectricity: evolution and future of a technology, SSBM, Vol. 114, pp. 37-88, 2008. https://doi.org/10.1007/978-3-540-68683-5
  3. A. Behera, Piezoelectric materials, in Adv. Mater., Springer, pp. 43-76, 2022.
  4. C. H. Hong, H. P. Kim, B. Y. Choi, H. S. Han, J. S. Son, C. W. Ahn, and W. Jo, "Lead-free piezoceramics - Where to move on?", J. Materiomics, Vol. 2, No. 1, pp. 1-24, 2016. https://doi.org/10.1016/j.jmat.2015.12.002
  5. P. G. Le, T. L. Pham, D. T Nguyen, J.-S Lee, J. G. Fisher, H.-P Kim, and W. Jo, "Solid state crystal growth of single crystals of 0.75(Na1/2Bi1/2)TiO3-0.25SrTiO3 and their characteristic electrical properties", J. Asian Ceram. Soc., Vol. 9, No. 1, pp. 63-74, 2021. https://doi.org/10.1080/21870764.2020.1847426
  6. I. Milisavljevic and Y. Wu, "Current status of solid-state single crystal growth", BMC Materials, Vol. 2, No. 1, pp. 1-26, 2020. https://doi.org/10.1186/s42833-019-0007-1
  7. G. L. Messing, S. Trolier-McKinstry, E. M. Sabolsky, C. Duran, S. Kwon, B. Brahmaroutu, P. Park, H. Yilmaz, P. W. Rehring, K. B. Eitel, E. Suvaci, M. Seabaugh, and K. S. Oh, "Templated grain growth of textured piezoelectric ceramics", Crit. Rev. Solid State Mater. Sci., Vol. 29, No. 2, pp. 45-96, 2004. https://doi.org/10.1080/10408430490490905
  8. S. Kwon, E. M. Sabolsky, G. L. Messing, and S. TrolierMcKinstry, "High Strain,<001>Textured 0.675Pb(Mg1/3Nb2/3) O3-0.325PbTiO3 Ceramics: Templated Grain Growth and Piezoelectric Properties", J. Am. Ceram. Soc., Vol. 88, No. 2, pp. 312-317, 2005. https://doi.org/10.1111/j.1551-2916.2005.00057.x
  9. J. Wu, S. Zhang, and F. Li, "Prospect of texture engineered ferroelectric ceramics", Appl. Phys. Lett., Vol. 121, No. 12, p. 120501, 2022.
  10. Z. Zhang, X. Duan, B. Qiu, Z. Yang, D. Cai, P. He, D. Jia, and Y. Zhou, "Preparation and anisotropic properties of textured structural ceramics: A review", J. Adv. Ceram, Vol. 8, No. 3, pp. 289-332, 2019. https://doi.org/10.1007/s40145-019-0325-5
  11. Y. Sun, Y. Chang, J. Wu, Y. Liu, L. Jin, S. Zhang, B. Yang, and W. Cao, "Ultrahigh energy harvesting properties in textured lead-free piezoelctric composites", J. Mater. Chem. A, Vol. 7, No. 8, pp. 3603-3611, 2019. https://doi.org/10.1039/C8TA10312G
  12. A. Berksoy-Yavuz and E. Mensur-Alkoy, "Electrical properties and impedance spectroscopy of crystallographically textured 0.675[Pb(Mg1/3Nb2/3)O3]-0.325[PbTiO3] ceramics", J. Mater. Sci.: Mater. Electron., Vol. 29, No. 15, pp. 13310-13320, 2018. https://doi.org/10.1007/s10854-018-9455-8
  13. T. T. Zate, M. Kim, and J.-H. Jeon, "Outstanding unipolar strain of textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics manufactured by particle size distribution control of the plate-like BaTiO3 template", Sens. Actuator A Phys, Vol. 335, p. 113373, 2022.
  14. E. M. Sabolsky, "grain-oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics prepared by templated grain growth", Ph.D. Thesis, PSU, 2001.
  15. M. M. Seabaugh, G. L. Cheney, K. Hasinska, W. J. Dawson, and S. L. Swartz, "Development of highly textured piezoelectric ceramics via templated grain growth", ISAF IEEE, Vol. 1, pp. 377-380, 2000. https://doi.org/10.1109/ISAF.2000.941575
  16. S. Yang, L. Qiao, J. Wang, M. Wang, X. Gao, J. Wu, J. Li, Z. Xu, and F. Li, "Full matrix electromechanical properties of textured Pb(In1/2Nb1/2)O3-Pb(Sc1/2Nb1/2)O3-PbTiO3 ceramic", J. Appl. Phys., Vol. 131, No. 12, p. 124104, 2022.
  17. A. D. Moriana and S. Zhang, "Enhancing Electromechanical properties of Pb(Sc1/2Nb1/2)O3-PbZrO3-PbTiO3 piezoelectric ceramics via templated Grain Growth", Adv. Electron. Mater., Vol. 8, No. 6, p. 2100919, 2022.
  18. H. Leng, Y. Yan, B. Wang, T. Yang, H. Liu, X. Li, R. Sriramdas, K. Wang, M. Fanton, R. J. Meyer, L.-Q Chen, and S. Priya, "High performance high-power textured Mn/Cudoped PIN-PMN-PT ceramics", Acta Mater., Vol. 234, p. 118015, 2022.
  19. L. Bian, X. Qi, K. Li, Y. Yu, L. Liu, Y. Chang, W. Cao, and S. Dong, "High-performance [001]c-textured PNN-PZT relaxor ferroelectric ceramics for electromechanical coupling devices", Adv. Funct. Mater., Vol. 30, No. 25, p. 2001846, 2020.
  20. M. J. Brova, B. H. Watson III, R. L. Walton, E. R. Kupp, M. A. Fanton, R. J. Meyer Jr, and G. L. Messing, "Templated grain growth of high coercive field CuO-doped textured PYN-PMN-PT ceramics", J. Am. Ceram. Soc., Vol. 103, No. 11, pp. 6149-6156, 2020. https://doi.org/10.1111/jace.17349
  21. S. F. Poterala, Y. Chang, T. Clark, R. J. Meyer Jr, and G. L. Messing, "Mechanistic interpretation of the aurivillius to perovskite topochemical microcrystal conversion process", Chem. Mater., Vol. 22, No. 6, pp. 2061-2068, 2010. https://doi.org/10.1021/cm903315u
  22. F. K. Lotgering, "Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I", J. inorg. nucl. chem., Vol. 9, No. 2, pp. 113-123, 1959. https://doi.org/10.1016/0022-1902(59)80070-1
  23. E. M. Sabolsky, S. Trolier-McKinstry, and G. L. Messing, "Dielectric and piezoelectric properties of < 001> fiber-textured 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 ceramics", J. Appl. Phys., Vol. 93, No. 7, pp. 4072-4080, 2003. https://doi.org/10.1063/1.1554488
  24. Y. Yan, K.-H. Cho, and S. Priya, "Templated grain Growth of <001>-textured 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 piezoelectric ceramics for magnetic Field Sensors", J. Am. Ceram. Soc., Vol. 94, No. 6, pp. 1784-1793, 2011. https://doi.org/10.1111/j.1551-2916.2010.04298.x
  25. G. L. Messing, S. Poterala, Y. Chang, T. Frueh, E. R. Kupp, B. H. Watson, R. L. Walton, M. J. Brova, A.-K. Hofer, and R. Bermejo, "Texture-engineered ceramic property enhancements through crystallographic tailoring", J. Mater. Res., Vol. 32, No. 17, pp. 3219-3241, 2017. https://doi.org/10.1557/jmr.2017.207
  26. J. L. Jones, E. B. Slamovich, K. J. Bowman, and D. C. Lupascu, "Domain Switching Anisotropy in Textured Bismuth Titanate Ceramics", J. Appl. Phys., Vol. 98, No. 10, p. 104102, 2005.
  27. H.-T. Oh, H.J. Joo, M. C. Kim, and H. Y. Lee, "ThicknessDependent Properties of undoped and Mn-doped (001) PMN-29PT [Pb(Mg1/3Nb2/3)O3-29PbTiO3] single crystals", J. Korean Ceram. Soc., Vol. 55, No. 3, pp. 290-298, 2018. https://doi.org/10.4191/kcers.2018.55.3.07
  28. V. Randle and O. Engler, Introduction to texture analysis: macrotexture, microtexture, and orientation mapping, CRC press, pp. 75-122, 2003.
  29. J. L. Jones, B. J. Iverson, and K. J. Bowman, "Texture and anisotropy of polycrystalline piezoelectrics", J. Am. Ceram. Soc., Vol. 90, No. 8, pp. 2297-2314, 2007. https://doi.org/10.1111/j.1551-2916.2007.01820.x
  30. S. F. Poterala, S. T. McKinstry, R. J. Meyer Jr., and G. L. Messing, "Processing, texture quality, and piezoelectric properties of <001>C textured (1-x)Pb(Mg1/3Nb2/3)TiO3-xPbTiO3 ceramics", J. Appl. Phys., Vol. 110, No. 1, p. 014105, 2011.
  31. W. Jo, J. E. Daniels, J. L. Jones, X. Tan, P. A. Thomas, D. Damjanovic, and J. Rodel, "Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics", J. Appl. Phys., Vol. 109, No. 1, p. 014110, 2010.
  32. Y. Ehara, S. Yasui, J. Nagata, D. Kan, V. Anbusathaiah, T. Yamada, O. Sakata, H. Funakubo, and V. Nagarajan, "Ultrafast switching of ferroelastic nanodomains in bilayered ferroelectric thin films", J. Appl. Phys., Vol. 99, No. 18, p. 182906, 2010.
  33. J.-H. Cho and W. Jo, "Practical Guide to X-ray Spectroscopic Data Analysis", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 35, No. 3, pp. 223-231, 2022.
  34. W.-S. Kang, G.-J. Lee, and W. Jo, "Practical Guide to the Characterization of Piezoelectric Properties", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 34, No. 5, pp. 301-313, 2021.
  35. S. Yang, M. Wang, L. Wang, J. Liu, J. Wu, J. Li, X. Gao, Y. Chang, Z. Xu, and F. Li, "Achieving both high electromechanical properties and temperature stability in textured PMN-PT ceramics", J. Am. Ceram. Soc., Vol. 105, No. 5, pp. 3322-3330, 2021.
  36. W.-S. Kang, T.-G. Lee, J.-H. Kang, J.-H. Lee, G. Choi, S.-W. Kim, S. Nahm, and W. Jo, "Bi-templated grain growth maximizing the effects of texture on piezoelectricity", J. Eur. Ceram. Soc., Vol. 41, No. 4, pp. 2482-2487, 2021. https://doi.org/10.1016/j.jeurceramsoc.2020.12.028