Microstructures and Textures of Electrodeposited Ni/Invar Bimetal

전주도금으로 제조된 Ni/Invar 바이메탈의 미세조직과 집합조직

  • Kang, Ji Hoon (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Seo, Jeong Ho (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Park, Yong Bum (Department of Materials Science and Metallurgical Engineering, Sunchon National University)
  • 강지훈 (순천대학교 재료.금속공학과) ;
  • 서정호 (순천대학교 재료.금속공학과) ;
  • 박용범 (순천대학교 재료.금속공학과)
  • Received : 2008.04.21
  • Published : 2008.07.25

Abstract

By using electrodeposition, we developed a new method to produce Ni/Invar bimetal sheets, which have been used for the present study to investigate the texture evolution during annealing. The grains of electrodeposited Ni were columnar, while those of electrodeposited Fe-Ni alloy were nanocrystalline. These different parts of the bimetal underwent different evolution of textures and microstructures during annealing. In the nanocrystalline Invar, the as-deposited textures were of fiber-type characterized by strong <100>//ND and weak <111>//ND components, and the occurrence of grain growth resulted in the strong development of the <111>//ND fiber texture with the minor <100> // ND components. On the other hand, in the columnar-structured Ni part, the as-deposited <110>//ND fiber texture transformed to the <112>//ND fiber texture due to recrystallization occurring above $550^{\circ}C$. The development of microtextures which took place during annealing in the Ni/Invar interfacial regions was investigated by using the OIM analysis, and discussed in terms of the effect of atomic diffusion across the interfaces.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. Metals Handbook 10th ed., ASM International, 2 (1990)
  2. C. E. Guillum, C. R. Acad. Sci. 124, 1515 (1897)
  3. Yoji Nakamura, IEEE Transactions on Magnetics, MAG-12, 278 (1976)
  4. S. G.. Rancourt, Physics in Canada 45, 3 (1989)
  5. David L. Grimmett, Morton Schwartz and Ken Nove, Plat. and Surf. Fin. 75, 94 (1988)
  6. L. Nataf, F. Deeremps, M. Gauthier and G. Syfosse, Ultrasonic 44, e555 (2006) https://doi.org/10.1016/j.ultras.2006.05.188
  7. Y. B. Park: Korean Patent No. 10-2003-0026108 (2003)
  8. H. J. Bunge, Mathermatische Methoden der Texturanalyse, Akademie-Verlag, Berlin (1969)
  9. B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Pub., Reading, 102 (1978)
  10. C. Suryanarayana, Int. Mater. Rev. 40, 41 (1995) https://doi.org/10.1179/095066095790151106
  11. U. Erb, Nanostructured Materials 6, 534 (1995)
  12. Nguyen Ngoc Phong , Ngo Thi Anh Tuyet , Do Chi Linh , Nguyen Viet Hue , Sik Chol Kwon , Man Kim and Joo Yul Lee, Metals and Materials Int. 12, 493 (2006) https://doi.org/10.1007/BF03027749
  13. E. Ma, Metals and Materials Int. 10, 528 (2004)
  14. J.K. Kim, J.H. Seo and Y.B. Park, Mater. Sci. Forum 467-470, 1314 (2004)
  15. Y. B. Park, S. H. Hong, C. S. Ha, H. Y. Lee and T. H. Yim, Mater. Sci. Forum 402-412, 931 (2002)
  16. D. G. Brandon, B. Ralph, S. Ranganathan and M. S. Wald, Acta Metall. 12, 813 (1964) https://doi.org/10.1016/0001-6160(64)90175-0
  17. V. Randle and O. Engler, Introduction to Texture Analysis, Gordon & Breach Sci. Pub., Singapore, 148 (2000)
  18. Robert E. Reed-Hill., Physical Metallurgy Principle 3rd ed., PWS Pub., Boston, 364 (1992)
  19. J. L. Bocquet, G. Brebec and Y. Limoge, Diffusion in Metals and Alloys in Physical Metallugy 4th eds. by R. W. Cahn and P. Haasen, Elsevier Sci., Oxford, 1, 575 (1996)
  20. Y. B. Park, J. Park, C. S. Ha and T. H. Yim, Mater. Sci. Forum 408-412, 919 (2002)
  21. J. H. Seo, J. K. Kim, T. H. Yim and Y. B. Park, Mater. Sci. Forum 475-479, 3483 (2005)