• Title/Summary/Keyword: Grain Structure

Search Result 1,246, Processing Time 0.025 seconds

Comparison of Abnormal Grain Growth Behavior of Lead-Free (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) Piezoelectric Ceramics (비납계 (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) 압전 세라믹의 비정상 결정 성장 거동 비교)

  • Jung, Seungwoon;Lim, Ji-Ho;Jung, Han-Bo;Ji, Sung-Yub;Choi, Seunggon;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.343-349
    • /
    • 2020
  • NKN [(Na,K)NbO3] is a candidate lead-free piezoelectric material to replace PZT [Pb(Zr,Ti)O3]. A single crystal has excellent piezoelectric-properties and its properties are dependent of the crystal orientation direction. However, it is hard to fabricate a single crystal with stoichiometrically stable composition due to volatilization of sodium during the growth process. To solve this problem, a solid solution composition is designed (Na,K)NbO3-Ba(Cu,Nb)O3 and solid state grain growth is studied for a sizable single crystal. Ceramic powders of (Na,K)NbO3-M(Cu,Nb)O3 (M = Ca, Sr, Ba) are synthesized and grain growth behavior is investigated for different temperatures and times. Average normal grain sizes of individual specimens, which are heat-treated at 1,125 ℃ for 10 h, are 6.9, 2.8, and 1.6 ㎛ for M = Ca, Sr, and Ba, respectively. Depending on M, the distortion of NKN structure can be altered. XRD results show that (NKN-CaCuN: shrunken orthorhombic; NKN-SrCuN: orthorhombic; NKN-BaCuN: cubic). For the sample heat-treated at 1,125 ℃ for 10 h, the maximum grain sizes of individual specimens are measured as 40, 5, and 4,000 ㎛ for M = Ca, Sr, and Ba, respectively. This abnormal grain size is related to the partial melting temperature (NKN-CaCuN: 960 ℃; NKN-SrCuN: 971 ℃; NKN-BaCuN: 945 ℃).

Effect of Ion Damage on the Crystallization of PZT thin films (이온주입이 PZT 박막의 결정화에 미치는 영향)

  • 박응철;이장식;박정호;이병일;주승기
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.418-424
    • /
    • 2000
  • Effects of Ar ion damage prior to the phase transformation from pyrochlore to perovskite structure of PZT thin films have been investigated. As the degree of damage increased by increasing the acceleration voltage in the ion mass doping system, the phase transformation temperature decreased such that the temperature could be lowered down to 550$^{\circ}C$ when the film was damaged at 15 kV for 5 minutes. When the film was damaged prior to the heat treatment grain size of the perovskite thin films became less than 300${\AA}$. It turned out that relatively high value of the remanent polarization (about 30${\mu}$C/$\textrm{cm}^2$) as well as improvement of the fatigue characteristics to a large extent is closely related to the fine grain size of thus obtained PZT films.

  • PDF

Formation of submicrocrystalline in Ti-13Nb-13Zr alloy without severe deformation and enhanced mechanical compatibility (Ti-13Nb-13Zr 합금의 저 변형량에서 초미세 결정립 형성 및 기계적 적합성 향상)

  • Park, C.H.;Yeom, J.T.;Chun, Y.S.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.328-331
    • /
    • 2009
  • Microstructural evolution of alpha and beta phases during dynamic globularization of near-beta Ti-13Nb-13Zr alloy was investigated to determine the optimum processing conditions. The submicrocrystalline alloy sheet with ${\sim}80%$ of high-angle grain boundaries was produced utilizing dynamic globularization at temperature of $600^{\circ}C$, equivalent strain rate of $10^{-1}\;s^{-1}$ and strain of 1.4. The refined structure with the gain size of ${\sim}0.4{\mu}m$ showed 25-60% enhanced mechanical compatibility as compared to those of the conventional mill-annealed or solution treated and aged microstructures.

  • PDF

Study on Grain Boundaries in Single-layer Graphene Using Ultrahigh Resolution TEM

  • Lee, Zong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.107-107
    • /
    • 2012
  • Recently, large-area synthesis of high-quality but polycrystalline graphene has been advanced as a scalable route to applications including electronic devices. The presence of grain boundaries (GBs) may be detrimental on some electronic, thermal, and mechanical properties of graphene, including reduced electronic mobility, lower thermal conductivity, and reduced ultimate mechanical strength, yet on the other hand, GBs might be beneficially exploited via controlled GB engineering. The study of graphene grains and their boundary is therefore critical for a complete understanding of this interesting material and for enabling diverse applications. I present that scanning electron diffraction in STEM mode makes possible fast and direct identification of GBs. We also demonstrate that dark field TEM imaging techniques allow facile GB imaging for high-angle tilt GBs in graphene. GB mapping is systematically carried out on large-area graphene samples via these complementary techniques. The study of the detailed atomic structure at a GB in suspended graphene uses aberration-corrected atomic resolution TEM at a low kV.

  • PDF

The Electrical Characteristics of Chromium Oxide Film Produced by Son Beam Sputter Deposition (이온선 스퍼터 증착법에 의하여 제조된 CrOx의 전기적 특성)

  • 조남제;이규용
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.518-523
    • /
    • 2002
  • The influences of ion beam energy and reactive oxygen partial pressure on the physical and crystallographic characteristics of transition metal oxide compound(CrOx) film were studied in this paper. Chromium oxide films were deposited onto a cover-glass using ion Beam Sputter Deposition(IBSD) technique according to the various processing parameters. Crystallinity and grain size of as-deposited films were analyzed using XRD analysis. Thickness and Resistivity of the films were measured by $\alpha$-step and 4-point probe measurement. According to the XRD, XPS and resistivity results, the deposited films were the cermet type films which had crystal structure including amorphous oxide(a-oxide) phase and metal Cr phase simultaneously. The increment of the ion beam energy during the deposition process led to decreasing of metal Cr grain size and the rapid change of resistivity above the critical $O_2$ partial pressure.

Microstructural Change of Doped-Alumina Membrane (도핑된 알루미나 여과막의 미세구조 변화)

  • 이진하;최성철;한경섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1040-1047
    • /
    • 1999
  • After alumina sol was prepared by Yoldas process supported membranes were fabricated by adding ce and Re solution and SiO2 sol into alumina sol. The particle size of alumina sol was 11 nm and it was monodispersed transparent and stable for long time. The pore size of un-doped membrane started to increase to about 7,5nm at 1000$^{\circ}C$ and it was grown to twice (about 15nm) at 1100$^{\circ}C$ However the pore size of doped alumina was uniform to 1100$^{\circ}C$. The effect of retardation of grain growth was superior in SiO2 addition to that of Ce and Ru Because SiO2 doped samples transformed to needed-like phase and densified at 1200$^{\circ}C$ their application in membranes was limited. Ce and Ru doped sample showed vermicular structure identical to the un-doped ones at 1200$^{\circ}C$ But the particle size was smaller than that of un-doped ones.

  • PDF

AUTOMATIC LEVELING CONTROL SYSTEM FOR COMBINE

  • Lee, S. S.;K. S. Oh;H. Hwang;Park, D. Y.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.684-689
    • /
    • 2000
  • In harvesting rice and barley using combine, the inclination of the body caused by the irregular surface condition of the field and the soil sinking from the unbalanced weight during the grain collection used to make harvesting operation difficult and even impossible. To overcome such a problem, automatic leveling control system for a combine has been developed and tested. The system was composed of the sensor for measuring left and right inclination of the combine chassis and the hydraulic control system. The adaptability of the control system was investigated by analyzing system response in time domain. And the limit angle of the leveling control was set up to be +/- 7$^{\circ}$. The proposed control and hydraulic power system was implemented to the prototype combine. The prototype combine was designed and built as a separable structure with chassis and track. This paper shows results of the leveling performance tested in the laboratory and the grain field.

  • PDF

Nanocrystalline Materials-an Overview

  • Suryanarayana, C.
    • Journal of Powder Materials
    • /
    • v.3 no.4
    • /
    • pp.233-245
    • /
    • 1996
  • Nanocrystalline materials, with a grain size of typically <100 nm, are a new class of materials with properties vastly different from and often superior to those of the conventional coarse-grained materials. These materials can be synthesized by a number of different techniques and the grain size, morphology, and composition can be controlled by controlling the process parameters. In comparison to the coarse-grained materials, nanocrystalline materials show higher strength and hardness, enhanced diffusivity, improved ductility/toughness, reduced, density, reduced elastic modulus, higher electrical resistivity, increased specific heat, higher coefficient of thermal expansion, lower thermal conductivity, and superior soft and hard magnetic properties. Limited quantities of these materials are presently produced and marketed in the US, Canada, and elsewhere. Applications for these materials are being actively explored. The present article discusses the synthesis, structure, thermal stability, properties, and potential application of nanocrystalline materials.

  • PDF

A Study on Capacitance Enhancement by Hemispherical Grain Silicion and Phosphorous Concentration Properties (HSC-Si형성에 따른 캐패시턴스의 향상 및 인농도 특성에 관한 연구)

  • 정양희;정재영;이승희;강성준
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.475-479
    • /
    • 2000
  • The box capacitor structure with H5G-Si described here reliably achieves a cell capacitance of 28fF with a cell area of a 0.482f${\mu}{\textrm}{m}$$^2$ for 128Mbit DRAM. An H5G-Si formation technology with seeding method, which employs Si$_2$H$_{6}$ molecule irradiation and annealing, was applied for realizing 64Mbit and larger DRAMS. By using this technique, grain size controlled H5G-Si can be fabricated on in-situ phosphorous doped amorphous silicon electrodes. The HSG-Si fabrication technology achieves twice the storage capacitance with high reliability for the stacked capacitors.s.

  • PDF