• Title/Summary/Keyword: Grain Structure

Search Result 1,243, Processing Time 0.033 seconds

Microstructural and Mechanical Characteristics of the ECAPed P/M 6061 Al Alloy (ECAP가공한 P/M 6061 Al 합금의 미세조직과 기계적 성질)

  • 장시영
    • Journal of Powder Materials
    • /
    • v.9 no.1
    • /
    • pp.43-49
    • /
    • 2002
  • Microstructural and mechanical characteristics of P/M 6061 Al alloy subjected to equal channel angular pressing (ECAP) were investigated. The P/M 6061 Al alloy had an intial grain size of approximately $20\mutextrm{m}$. An equiaxed ultra-fine grained structure with the mean grain size of $~50 \mutextrm{m}$ was obtained by four repetitive ECAP at 473 K. The microhardness of P/M 6061 Al alloy was drastically increased from about 40 Hv to 80 Hv by two repetitive ECAP at 373 K. However, the microhardness decreased with increasing ECAP temperature. The tensile stength of as-hot-pressed P/M 6061 Al alloy before ECAP was 95 MPa, whereas it increased to both 248 MPa after two repetitive ECAP at 373 K and 130 MPa after four repetitive ECAP at 473 K. The tensile properties of the ECAPed sample were compared with those of commercial cast 6061-O and 6061-T4 Al alloys.

Deformation Characteristic by Compression in High-Nitrogen Austenitic Stainless Steel (고질소강 오스테나이트계 스테인레스강의 압축변형특성)

  • Lee, J.W.;Kim, D.S.;Kim, B.K.;Lee, M.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.139-141
    • /
    • 2007
  • Compression tests were carried out to investigate morphologies of compressed specimen, deformation microstructure and stress-strain relation in high-nitrogen austenite stainless steel. Tests were performed under a wide range of temperature and, with true strain rates up to $\dot{\varepsilon}$ =0.05, 0.1, 0.5 and $1.0s^{-1}$. The activation energy of loading force was equal to plastic deformation energy within the temperature range of $900^{\circ}C$ to $1250^{\circ}C$. Dynamically recrystallized grain size decreased with an increasing strain rate and temperature. Flow stresses and deformation microstructures, were used to quantify the critical strain rate and recrystallized grain size. The grain size versus strain rate-temperature map obtained in the study was in good agreement with the deformation microstructures of compressed specimens.

  • PDF

Fabrication and Mechanical Properties of Porous Silicon Carbide Ceramics from Silicon and Carbon Mixture (실리콘과 카본을 이용한 다공질 탄화규소의 제조와 기계적 특성)

  • Kim, Jong-Chan;Lee, Eun Ju;Kim, Deug-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.429-433
    • /
    • 2013
  • Silicon, carbon, and B4C powders were used as raw materials for the fabrication of porous SiC. ${\beta}$-SiC was synthesized at $1500^{\circ}C$ in an Ar atmosphere from a silicon and carbon mixture. The synthesized powders were pressed into disk shapes and then heated at $2100^{\circ}C$. ${\beta}$-SiC particles transformed to ${\alpha}$-SiC at over $1900^{\circ}C$, and rapid grain growth of ${\alpha}$-SiC subsequently occurred and a porous structure with elongated plate-type grains was formed. The mechanism of this rapid grain growth is thought to be an evaporation-condensation reaction. The mechanical properties of the fabricated porous SiC were investigated and discussed.

Patterns between wall pressures and stresses with grain moisture on cylindrical silo

  • Kibar, Hakan
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.487-496
    • /
    • 2017
  • The focus of this study were to investigate patterns between wall pressures and stresses with grain moisture of soybean and rice varieties widespread cultivated in Turkey in order to determine needed designing parameters for structure analysis in silos at filling and discharge. In this study, the wall pressures and stresses were evaluated as a function of moisture contents in the range of 8-14% and 10-14% d.b. The pressures and von Mises stresses affected as significant by the change of grain moisture content. The main cause of pressure and stress drops is changed in bulk density. Therefore is extremely important bulk density and moisture content of the product at the structural design of the silos. 4 mm wall thickness, were determined to be safe for von Mises stresses in both soybean and rice silos is smaller than 188000 kPa.

Mumetal Growing Temperature Effect on the Exchange Coupling of Cu/mumetal/Al Oxide/Co/Cu Multilayers

  • Lee, Y.W.;Lee, T.H.;Kim, C.G.;Kim, C.O.;Yoon, T.S.;Lee, Y.H.
    • Journal of Magnetics
    • /
    • v.7 no.1
    • /
    • pp.14-17
    • /
    • 2002
  • Magnetic multilayers of a ferromagnetic (FM)/insulator (I)/ferromagnetic (FM) structure have been studied to investigate magnetic exchange coupling between two FM layers. As the Mumetal $(Ni_{77}Fe_{14}Mo_{5}Cu_4$ wt%) growth temperature increases, the grain size and the surface roughness increase simultaneously. The smallest coupling field is obtained at $40^\circ{C}$ where the grain size is larger than that of the $20^\circ{C}$ sample. The exchange coupling field increases again at temperatures higher than $40^\circ{C}$ due to increase in the surface roughness of the Mumetal.

Analysis of electrical properties of two-step annealed polycrystalline silicon thin film transistors (두 단계 열처리에 의해 제작된 다결정 실리콘 박막트랜지스터의 전기적 특성의 분석)

  • 최권영;한민구;김용상
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.568-573
    • /
    • 1996
  • The amorphous silicon films deposited by low pressure chemical vapor deposition are crystallized by the various annealing techniques including low-temperature furnace annealing and two-step annealing. Two-step annealing is the combination of furnace annealing at 600 [.deg. C] for 24 h and the sequential furnace annealing at 950 [.deg. C] 1h or the excimer laser annealing. It s found that two-step annealings reduce the in-grain defects significantly without changing the grain boundary structure. The performance of the poly-Si thin film transistors (TFTs) produced by employing the tow-step annealing has been improved significantly compared with those of one-step annealing. (author). 13 refs., 6 figs., 1 tab.

  • PDF

An Excimer Laser Annealed Poly-Si Thin Film Transistor Designed for Reduction of Grainboundary Effect (채널에 단일 그레인 경계를 갖는 다결정 실리콘박막 트랜지스터)

  • 전재홍
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.559-561
    • /
    • 2003
  • We report a new excimer laser annealing method which successfully results in a single grain boundary formation in the channel of polycrystalline silicon thin film transistor. The proposed method is based on lateral grain growth and employs aluminum patterns which act as selective beam mask and lateral heat sink. The maximum grain size obtained by the proposed method is about 1.6${\mu}{\textrm}{m}$ in the length. The grainboundaries should be arranged parallel with the direction of current flow for the best device performance, so we propose a new device fabrication method and a new poly-Si TFT structure. Poly-Si TFT fabricated by the proposed method exhibits considerably improved electrical characteristics, such as high field effect mobility exceeding 240 $cm^2$/Vsec.

Abnormal Grain Growth Mechanism of Calcium Hexaluminate Phase

  • Song, Jun-Ho;Jo, Young-Jin;Bang, Hee-Gon;Park, Sang-Yeup
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.525-526
    • /
    • 2006
  • Calcium-hexaluminate phase $(CA_6)$ is known to be effective for the crack shielding due to the spinel block crystal structure. In this study, we focused to the control of $CA_6$ morphology for good damage tolerance behavior in alumina and zirconia/calcium-hexaluminate $(CA_6)$ composites. Calcium-hexaluminate $(CA_6)$ composites were prepared from zirconia, alumina and calcium carbornate powders. Calcium-hexaluminate $(CA_6)$ phase was obtained by the solid reaction through the formation of intermediate phase $(CA_2)$. $CA_6$ phase showed the column type abnormal grain grown behavior composed of small blocks. Due to the typical microstructure of $CA_6$, alumina and zirconia/calcium-hexaluminate composites provide a well controlled crack propagation behavior.

  • PDF

Consolidation of Rapidly Solidified Al-20 wt% Si Alloy Powders Using Equal Channel Angular Pressing (급속응고 Al-20 wt% Si 합금 분말의 ECAP를 통한 고형화)

  • 윤승채;홍순직;서민홍;정영기;김형섭
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.233-241
    • /
    • 2004
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve both full density and grain refinement of Al-20 wt% Si powders without grain growth, which was considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (Equal channel angular pressing), one of the most promising method in SPD, was used for the powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 passes was conducted for 10$0^{\circ}C$ and 20$0^{\circ}C$ It was found by microhardness, compression tests and micro-structure characterization that high mechanical strength could be achieved effectively as a result of the well bonded powder contact surface during ECAP process. The SPD processing of powders is a viable method to achieve both fully density and nanostructured materials.

A CLASSIFICATION OF UNIQUELY DIFFERENT TYPES OF NUCLEAR FISSION GAS BEHAVIOR

  • HOFMAN GERARD L.;KIM YEON SOO
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.299-308
    • /
    • 2005
  • The behavior of fission gas in all major types of nuclear fuel has been reviewed with an emphasis on more recently discovered aspects. It is proposed that the behavior of fission gas can be classified in a number of characteristic types that occur at a high or low operating temperature, and/or at high or low fissile burnup. The crystal structure and microstructure of the various fuels are the determinant factors in the proposed classification scheme. Three types of behavior, characterized by anisotropic $\alpha$-U, high temperature metallic $\gamma$-U, and cubic ceramics, are well-known and have been extensively studied in the literature. Less widely known are two equally typical low temperature kinds: one associated with fission induced grain refinement and the other with fission induced amorphization. Grain refinement is seen in crystalline fuel irradiated to high burnup at low temperatures, whereas breakaway swelling is observed in amorphous fuel containing sufficient excess free-volume. Amorphous fuel, however, shows stable swelling if insufficient excess free-volume is available during irradiation.