• Title/Summary/Keyword: Grain Structure

Search Result 1,246, Processing Time 0.029 seconds

The Study of Mechanical Properties of Degraded Compacted Graphite Iron(CGI) Under 873~1273 K (873~1273 K에서 열화된 강화흑연강의 기계적 특성 연구)

  • Nam, Ki Woo;Lee, Soo Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.173-180
    • /
    • 2013
  • Compacted graphite iron(CGI), also known as vermicular graphite iron, is a metal which is gaining popularity in applications that require either greater strength, or lower weight than cast iron. Recently compacted graphite iron has been used for diesel engine blocks. Considering that using in exhaust manifold of the diesel engine, CGI340 was conducted the heat treatment during 1 hour to 96 hours from 873 to 1273 K. Mechanical characteristics were evaluated. The obtained results are as follows; The tensile strength of the heat treated specimens showed overall lower tensile strength than that of the base metal. Tensile strength decreases with increasing of heat treatment time, and the higher heat treatment temperature and the longer time, were more reduced. The fatigue limit by the ultrasonic fatigue test was approximately 130 MPa of base metal, 100 MPa of 1173 K (96 hrs) specimen, respectively. The hardness decreases with increasing heat treatment time, and the higher the heat treatment temperature was lowered hardness distribution. In CGI340, average hardness of nodular graphite was 120 Hv, average hardness of vermicular graphite was 114 Hv. This showed lower hardness than the base structure ferrite. The nodular graphite and vermicular graphite according to the heat treatment temperature and time didn't have a consistent change. However, the grain size of base structure grew with increasing of heat treatment time.

Study on the Improvement of Land Clearing Methods by Bulldozer & Fertilization of Cleared Soil (불도우저에 의한 개간 공법의 개선과 숙지화에 관한 연구)

  • Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.1
    • /
    • pp.3627-3641
    • /
    • 1975
  • The Government is trying to increase total food grain yield to meet national self sufficiency by means of increasing unit yield as well as extending crop land, and this year he set the target of 321,000 hectare of forest to clear for cropping. This study was carried to investigate the most efficient method of clearing hillock by bulldozer, and successful method to develope yielding potential of newly cleared land in short term. Since the conventional land clearing method is just earth leveling and root removing neglecting top soil treatment, the growth of crop was poor and farmer tends not to care the land. The top-soil-furrowing method is applied through out this study, that is advantageous especially for the land having shallow top soil and low fertility like Korean forest. In this study, various operating method were tried to find out most efficient method separately in connection with the land slope less than 25 percent and over, and several fertilizing methods to develop yielding potential. The results are as follows; 1) For the natural land slope utilization method, applicable to the land having less than 25 percent slope, reverse operating was more efficient than using forward gear of bulldozer. The operating time was 3 hour 32 minutes and 36 seconds using forward gear was 2 hour 32 minutes and 30 seconds for reverse gear operation per 1,000 square meter. 2) Bulldozer having angle blade adjustment needed 7hr 15min. for constructing of terrace per 10a compaire with the one having angle & tilt adjustment needed 6hr 4min for same operations. Specially there is significant difference for operation time of first period (earth cutting) such as bulldozer having angle blade adjustment needed 3hr 56min compaired with the one having angle & tilt adjustment 3hr 59min. In construction of terrace, the bull-dozer having tilting and angle blade adjustment was most suitable and performed efficiently. 3) For the fertilizer application treatment, the grass (Ladino clover) yield in first year was almost same as ordinary field's in the plot applied(N.P.K+lime+manure) while none fertilizer plot showed one tenth of it, and (N.P.K.+lime) applied plot yielded on third. 4) The effect of different land clearing method to yield showed significant difference between each treatment especially in the first year, and the conventional method was the lowest. In the second year, still conventional terracing plot yielded only half of ordinary field while the other plots showed as same as ordinary field's. 5) The downward top soil treatment plot showed most rapid improvement in soil structure during one year physio chemically, it showed increase in pH rate and organic composition, and the soil changed gradually from loam to sand-loam and the moisture content increased against the pF rate, and it gives good condition to grow hay due to the increase of field water capacity with higher available water content. 6) Since the soil of tested area was granite, the rate of soil errosion was increased about 2 to 5 percent influencing in soil structure more sand reducing clay content, and an optimum contour farming method should be prepared as a counter measure of errosion.

  • PDF

A Study on Anisotropy of Magnetic Susceptibility of Clastic Sedimentary Rocks in the Gyeongsang Basin (경상분지 쇄설성 퇴적암의 대자율 이방성 연구)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Hwang, Woong-Ki;Kwon, Hyun-Wook;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.8
    • /
    • pp.5-14
    • /
    • 2018
  • The grain size of clastic sedimentary rocks classifies the rock types and also causes of anisotropy of the rock. The anisotropy is one of the most important factors that dominates the strength and weathering behavior of rocks. The anisotropy of clastic sedimentary and igneous rocks in the Gyeongsang Basin including Yeongju, Daegu, and Busan were analyzed by magnetic susceptibility expressed by the degree of anisotropy and shape parameter. As the results of the study, the sandstone deposited under lacustrine environment unaffected by the external force shows 1.03 degree of anisotropy. The degrees of anisotropy of the rocks affected by faults and fault rocks show 1.06 and 1.14, respectively. The magnetic susceptibility of rocks is to decrease with the distance from the fault. A fresh mudstone and shale formed by fines show a similar magnitude of the degree of anisotropy to fault rock and correspond to oblate shape parameter due to their sedimentary structure. Due to these reasons, we need attention in design, construction, and maintenance of a structure constructed in mudstone and shale.

A Study on Self-Hardening Characteristics of Coal Ash by Mixing Ratio of Fly Ash and Bottom Ash (비회와 저회의 배합비에 따른 석탄회의 자경성에 관한 연구)

  • Shin, Woonggi;Lim, Daesung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.85-91
    • /
    • 2010
  • As enormous construction projects of land development are carried out around Korea, useful construction materials are needed to perform the construction projects. However, there are no more enough of fill and reclamation materials in our country. That is why the coal ash is expected to be utilized as an alternative material. Since the coal ash has the characteristics of a pozzolan and a selfhardening material, it is adjudged that coal ash has a great possibility to be used as a fill and reclamation material. In this study, grain size analysis, Atterberg limit test, and specific gravity test were performed to examine the physical characteristics of the coal ash about a self-hardening material before utilizing the coal ash in the construction. Compaction test, unconfined compression test, direct shear test, and flexible wall permeability test were conducted to investigate the engineering characteristics according to mixture ratios of fly ash and bottom ash. As a result of the tests, it was confirmed that the mixing ratio 1:1 of fly ash and bottom ash is the most effective to use as a fill and reclamation material. If the mixture of coal ash is used as a backfill material with light weight around structure, it is expected to play a significant role in reducing earth pressure on the back of the structure. As the age of the mixture of coal ash goes by, it intends to decrease the coefficient of permeability. As described above, the coal ash should be considered as an alternative material of fill and reclamation materials since the result of the tests indicates that the coal ash is suitable to a useful material on the construction design.

Growth of Thin Film Using Chemical Bath Deposition Method and Their Photoconductive Characteristics (CBD 방법에 의한 CdS 박막의 성장과 광전도 특성)

  • Hong, K.J.;Lee, S.Y.;You, S.H.;Suh, S.S.;Moon, J.D.;Shin, Y.J.;Jeoung, T.S.;Shin, H.K.;Kim, T.S.;Song, J.H.;Rheu, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.3-10
    • /
    • 1993
  • Polycrystalline CdS thin films were grown on ceramic substrate using a chemical bath deposition method. They were annealed at various temperature and X-ray diffraction patterns were measured by X-ray diffractometer in order to study CdS polycrystal structure. Using extrapolation method of X-ray diffraction patterns for the CdS samples annealed in $N_{2}$ gas at $550^{\circ}C$ it was found hexagonal structure whose lattice constants $a_{o}$ and $c_{o}$ were $4.1364{\AA}$ and $6.7129{\AA}$, respectively. Its grain size was about $0.35{\mu}m$. Hall effect on this sample was measured by Van der Pauw method and studied on carrier density and mobility defending on temperature. From Hall data, the mobility was likely to be decreased by piezo electric scattering at temperature range of 33K and 150k and by polar optical scattering at temperature range of 150K and 293K. We measured also spectral response, sensitivity (${\gamma}$), maximum allowable power dissipation and response time on these samples.

  • PDF

Characterization of CdSe Thin Film Using Chemical Bath Deposition Method (Chemical Bath Deposition 방법으로 제작한 CdSe 박막의 특성)

  • Hong, K.J.;Lee, S.Y.;You, S.H.;Suh, S.S.;Moon, J.D.;Shin, Y.J.;Jeong, T.S.;Shin, H.K.;Kim, T.S.;Song, J.H.;Rheu, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.81-86
    • /
    • 1993
  • Polycrystalline CdSe thin films were grown on ceramic substrate using a chemical bath deposition (CBD) method. They were annealed at various temperature and X-ray diffraction patterns were measured by X-ray diffractometer in order to study CdSe polycrystal structure. Using extrapolation method of X-ray diffraction patterns for the CdSe samples annealed in $N_{2}$ gas at $450^{\circ}C$ it was found hexagonal structure whose lattice parameters $a_{o}$ and $c_{o}$ were $4.302{\AA}$ and $7.014{\AA}$, respectively. Its grain size was about $0.3{\mu}m$. Hall effect on this sample was measured by Van der Pauw method and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by piezo electric scattering at temperature range of 33 K and 200 K, and by polar optical scattering at temperature range of 200 K and 293 K. We measured also spectral response, sensitivity (${\gamma}$), maximum allowable power dissipation and response time on these samples.

  • PDF

Synthesis and Emission Properties of Dy3+-doped BaMoO4 Phosphors (Dy3+ 이온이 도핑된 BaMoO4 형광체의 합성과 발광 특성)

  • Cho, Shinho
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.4
    • /
    • pp.181-187
    • /
    • 2013
  • $Dy^{3+}$-doped $BaMoO_4$ phosphor powders were synthesized by using the solid-state reaction method and their crystalline structure, morphology and size of particles, excitation and emission properties were investigated. The structure of all the phosphor powders, irrespective of the mol ratio of $Dy^{3+}$ ions, was found to be the tetragonal system with the main diffraction peak at (112) plane. The grain particles agglomerate together to form larger clusters with increasing the mol ratio of $Dy^{3+}$ ions. The excitation spectra were composed of a broad band centered at 293 nm and weak multiline peaked in the range of 230~320 nm, which were due to the transitions of $Dy^{3+}$ ions. The emission of the phosphors peaking at 666 and 754 nm, originating from the transitions of $^4F_{9/2}{\rightarrow}^6H_{11/2}$ and $^4F_{9/2}{\rightarrow}^6H_{9/2}$ of $Dy^{3+}$ ions, was rather weak, while the intensity of blue and yellow emission peaking at 486 nm and 577 nm due to the transitions of $^4F_{9/2}{\rightarrow}^6H_{15/2}$ and $^4F_{9/2}{\rightarrow}^6H_{13/2}$ of $Dy^{3+}$ ions was significantly stronger. The experimental results suggest that the white-light emission can be realized by controlling the yellow-to-blue intensity ratio of $Dy^{3+}$ emission.

Growth and Magnetic Properties of $Y_{3-x}La_xFe_5O_{12}(0.0{\le}X{\le}1.0)$ Powders and Thin Films by a Sol-Gel Method (Sol-Gel 법에 의한 $Y_{3-x}La_xFe_5O_{12}(0.0{\le}X{\le}1.0)$ 분말과 박막의 합성 및 자기적 특성에 관한 연구)

  • 엄영랑;김철성;임연수;이재광
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.6
    • /
    • pp.350-356
    • /
    • 1998
  • $Y_{3-x}La_xFe_5O_{12}$ (x=0.0, 0.25, 0.5, 0.75, 1.0) powders and thin films were fabricated by a sol-gel method and their magnetic properties and crystal structure were investigated by using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and Mossbauer spectroscopy. XRD and Mossbauer spectroscopy measurements show that garnet powders annealed at 900 $^{\circ}C$ for 8 hours were single-phased and that thin films fired at 800 $^{\circ}C$ for 2 hours were crystallized without any preferred direction. X-ray diffraction patterns of $Y_{3-x}La_xFe_5O_{12}$ powders annealed at 1000 $^{\circ}C$ had only peaks of the garnet structure in case of x$\leq$0.75 but those of $Y_2LaFe_5O_{12}$ powders consisted of peaks from garnets and $LaFeO_3$. Mossbauer sepectra of garnet powders grown by the sol-gel method had a similar shape of those of powders grown by a conventional ceramic method. Grain sizes of garnet powders were 200~300 nm and the averaged surface roughness was 3.17 nm. Results of VSM measurements show the powders and thin films had soft magnetic properties and that the garnet powders had the largest saturation magnetization, 30 emu/g, and the lowest coercivity, 52 Oe.

  • PDF

Effect of composition on the structural and thermal properties of TiZrN thin film (TiZrN 박막의 조성이 구조적 특성 및 열적 특성에 미치는 영향)

  • Choi, Byoung Su;Um, Ji Hun;Seok, Min Jun;Lee, Byeong Woo;Kim, Jin Kon;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.37-42
    • /
    • 2021
  • The effect of chemical composition on the structural and thermal properties of TiZrN thin films was studied. As the Zr fraction in the deposited TixZr1-xN (x = 0.87, 0.82, 0.7, 0.6, and 0.28) increased, microstructural changes consisted of reduction in the grain size and a gradual transition from columnar structure to granular structure were observed. In addition, it was also confirmed that a gradual crystal phase transition from TiN to TiZrN has occurred as the Zr fraction increased up to 0.4. After heat treatment at 900℃, Ti0.82Zr0.18N and Ti0.7Zr0.3N layers were converted to a form in which rutile phase TiO2 and TiZrO4 oxides coexist, while Ti0.6Zr0.4N layer was converted to TiZrO4 oxide. Among the five compositions of TiZrN films, the Ti0.6Zr0.4N showed the best high temperature stability and produced a significant enhancement in the thermal oxidation resistance of Inconel 617 through suppressing the surface diffusion of Cr caused by thermal oxidation of the Inconel 617 substrate.

Structural and Electrical Properties of La0.7Sr0.3-xMgxMnO3 Ceramics with MgO Content (MgO 첨가에 따른 La0.7Sr0.3-xMgxMnO3 세라믹스의 구조적, 전기적 특성)

  • Hyun-Tae Kim;Jeong-Eun Lim;Byeong-Jun Park;Sam-Haeng Yi;Myung-Gyu Lee;Joo-Seok Park;Young-Gon Kim;Sung-Gap Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.275-279
    • /
    • 2023
  • La0.7Sr0.3-xMgxMnO3 (LSMMO) (x=0.05~0.20) specimens are fabricated by a solid phase sintering method, and the sintering temperature and time are 1,300℃ and 2 hours, respectively. The dependence of the crystalline structure according to the amount of Mg2+ contents is not observed, and all specimens show a polycrystalline rhombohedral crystal structure, the X-ray diffraction (110) peaks move to the high angle side with increasing the amount of Mg2+ contents. LSMMO specimens exhibit a granule-shaped microstructure with an average grain size of 1 ㎛ or less. Resistivity gradually decrease as the amount of Mg2+ contents increased. And in the La0.7Sr0.1Mg0.2MnO3 specimen, resistivity and B25/65-value are 36.7 Ω-cm and 394 K at room temperature, respectively. LSMMO specimens show a variable-range hopping (VRH) electrical conduction mechanism, and the negative temperature of coefficient of resistance (NTCR) is approximately 0.37~0.38%/℃.