• Title/Summary/Keyword: Gradients

Search Result 1,176, Processing Time 0.03 seconds

A Study on Pressure Distribution, Wall Shear Stress and Friction Factor of Developing Turbulent Pulsating Flows in a Square Duct(Ⅰ), -Experimental Analysis- (정4각단면덕트의 입구영역에서 난류맥동유동의 압력분포, 전단응력분포와 관마찰계수에 관한 연구(Ⅰ), - 실험해석-)

  • Park, Gil-Mun;Cho, Byeong-Gi;Koh, Yeong-Ha;Bong, Tae-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.58-67
    • /
    • 1996
  • In the present study, the pressure distribution, wall shear stress distribution and friction factor of developing turbulent pulsating flows are investigated theoretically and experimentally in the entrance region of a square duct. The pressure distribution for turbulent pulsating flows are in good agreement with the theoretical values. The time-averaged pressure gradients of the turbulent pulsating flows show the same tendency as those of turbulent steady flows as the time-averged Reynolds number $(Re_{ta})$ increase. Mean shear stresses in the turbulent pulsating flow increase more in the inlet flow region than in the fully developed flow region and approach to almost constant value in the fully developed flow region. In the turbulent pulsating flow, the friction factor of the quasi-steady state flow $({\lambda}_{q, tu})$ follow friction factor's law in turbulent steady flow. The entrance length of the turbulent pulsating flow is not influenced by the time-averaged Reynolds number $(Re_{ta})$ and it is about 40 times as large as the hydraulic diameter.

  • PDF

Effect of the Velocity Suppression Techniques for a Mushy Solidification on Steady-state Mushy Region (머시응고에 대한 속도감쇠 기법이 정상상태 머시영역에 미치는 영향)

  • Kim, Woo-Seung;Kim, Deok-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1657-1668
    • /
    • 1998
  • In the analysis of a mushy solidification system with natural convection using a fixed grid method, the enthalpy method has been used to account for the release of latent heat. The variable viscosity, Darcy source, and hybrid methods have been employed for the velocity suppression in a mushy region. The choice of the values of solid viscosity and permeability constant in conjunction with the Darcy source term plays an important role in forming the location and shape of the phase boundaries. In this work the effects of these major parameters related to steady-state behavior in the system of mushy solidification are investigated through a simple test problem. The effective specific heat based on the spatial gradients of the enthalpy and temperature is adopted for the treatment of the release of latent heat. The effects of the Prandtl and Rayleigh numbers on the shape of mushy region are examined using the hybrid method.

Characterization of Mechanical Properties in the Heat Affected Zones of Alloy 82/182 Dissimilar Metal Weld Joint (Alloy 82/182 이종금속 용접부 열영향부의 기계적물성치 특성 파악)

  • Kim, Jin-Weon;Kim, Jong-Sung;Lee, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.73-78
    • /
    • 2008
  • The paper presents the characteristics of mechanical properties within the heat affected zone (HAZ) of dissimilar metal weld between SA508 Gr.1a and F316 stainless steel (SS) with Alloy 82/182 filler metal. Tensile tests were performed using small-size specimens taken from the HAZ regions close to both fusion lines of weld, and the micro-structures were examined using optical microscope (OM) and transmission microscope (TEM). The results showed that significant gradients of the yield stress (YS), ultimate tensile stress (UTS), and elongations were observed within the HAZ of SA508 Gr.1a. This was attributed to the different microstructures within the HAZ. In the HAZ of F316 SS, however, the welding effect dominated the YS and elongation rather than UTS, and TEM micrographs conformed the strengthening in the HAZ of F316 SS was associated with a dislocation-induced strain hardening.

  • PDF

A Study on Mobility Gradients and Phase Transitions in N-propyl-N,N-dimethylethanolamine Reaction (N-propyl-N,N-dimethylethanolamine 반응에서 유동성 변화와 상전이에 관한 연구)

  • Kim, Ki-Jun;Sung, Wan-Mo;Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.165-169
    • /
    • 2015
  • N-propyl-N,N-dimethylethanolamine was directly ultrasonicated in acidic water for 6 minute to give clear stock solutions. The catalytic hydrolysis of N-propyl-N,N-dimethylethanolamine was studied at $30{\sim}55^{\circ}C$ in the presence of uni-lamellar vesicle and mixture of uni- and multi-lamellar aggregates. The difference of rate between uni- and mixture was observed, where uni-lamellar reaction was more catalytic effect. The phase transition temperature of vesicle was $37{\sim}44^{\circ}C$. The particle size of multi-lamellar than that of uni-lamellar of biological membrane was measured more largely.

Development of Algorithms for Extracting Thermocline Parameters in the South Sea of Korea (한국 남부해역의 수온약층 추출 알고리즘 개발)

  • Yoon, Dong-Young;Choi, Hyun-Woo
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.265-273
    • /
    • 2012
  • A new algorithm was developed, not only to detect the existence of a thermocline, but also to extract the thermocline parameters (such as thermocline thickness, mixed layer thickness, maximum temperature gradient, and temperature difference of thermocline), using the vertical profile of water temperature. According to Kappa analysis, in order to find adequate threshold values of vertical water temperature gradients ${\Delta}T$ ($^{\circ}C/m$), agreement and reliability were 87% and 0.74 respectively, in the conditions of maximum ${\Delta}T{\geq}0.5$ and surface and bottom layers ${\Delta}T<{\mid}0.2{\mid}$. Also, three different kinds of methods, viz. 1. Gradient method, 2. Hyperbolic tangent method, and 3. Differential hyperbolic tangent method, were tested to extract the key parameters of a thermocline. Comparing the results of three different methods, the differential hyperbolic tangent method was the most appropriate to extract the start and end point of a thermocline curve.

CONTINUOUS PERSON TRACKING ACROSS MULTIPLE ACTIVE CAMERAS USING SHAPE AND COLOR CUES

  • Bumrungkiat, N.;Aramvith, S.;Chalidabhongse, T.H.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.136-141
    • /
    • 2009
  • This paper proposed a framework for handover method in continuously tracking a person of interest across cooperative pan-tilt-zoom (PTZ) cameras. The algorithm here is based on a robust non-parametric technique for climbing density gradients to find the peak of probability distributions called the mean shift algorithm. Most tracking algorithms use only one cue (such as color). The color features are not always discriminative enough for target localization because illumination or viewpoints tend to change. Moreover the background may be of a color similar to that of the target. In our proposed system, the continuous person tracking across cooperative PTZ cameras by mean shift tracking that using color and shape histogram to be feature distributions. Color and shape distributions of interested person are used to register the target person across cameras. For the first camera, we select interested person for tracking using skin color, cloth color and boundary of body. To handover tracking process between two cameras, the second camera receives color and shape cues of a target person from the first camera and using linear color calibration to help with handover process. Our experimental results demonstrate color and shape feature in mean shift algorithm is capable for continuously and accurately track the target person across cameras.

  • PDF

Image Interpolation using directional edge weight (방향성 에지 윤곽선 가중치를 이용한 영상 보간)

  • Lee, Ou-Seb;Kim, Hyeong-Kyo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.26-31
    • /
    • 2010
  • We proposed a new directional edge based interpolation, DEBI, by combining two weighted directional information to reduce blurred edges and annoying artifacts. Four isotropic gradient masks are employed in defining edge directions and they are proven to hold a first order derivative relation with respect to a rotating coordinate. Two minimum gradients among four absolute directional results are shown to be sufficient to describe slant edges efficiently. Compared with widely used bilinear and bicubic interpolation methods, the proposed algorithm results in a noticeable improvement along edge area.

3-D Flow Analysis for Compression Molding of Fiber-Reinforced Polymeric Composites with Ratio of Extensional & Shear Viscosity (인장 및 전단점성비를 고려한 섬유강화 플라스틱 복합재의 압축성형에 있어서 3차원 유한요소해석)

  • 조선형;윤두현;김형철;김이곤
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.11-18
    • /
    • 1999
  • The compression molding is widely used in the automotive industry to produce products that are large, thin, lightweight and stiff. The molded product is formed by squeezing a fiber-reinforced plastic composites. During a molding process of fiber reinforced thermoplastic composites, control of filling patterns in mold, orientation and distribution of fibers are needed to predict the effects of molding parameters on the flow characteristics. It is the objective of this paper to develop an isothermal compression molding simulation that can handle both thin and thick charges and motion of the flow front, and can predict pressure distributions and accurate velocity gradients. The composites are treated as an incompressible Newtonian fluid. The effects of slip parameter $\alpha$ and extensional/shear viscosity ratio $\zeta$ on the mold filling parameters are also discussed.

  • PDF

Numerical Analysis of Stress Regimes in and around Inactive and Active Fault Zones (비활성 그리고 활성 단층지역 내부와 주변에서의 응력장에 대한 수치적 분석)

  • Jeong, Woo-Chang;Song, Jai-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.117-125
    • /
    • 2001
  • This paper presented the analysis of stress regimes in and around inactive and active fault zones. The stress regime in the vicinity of an existing inactive fault zone is dependent on the orientation of the fault with respect to the current stress field and the contrast between the elastic properties of the faulted rock and those of the surrounding rock. In the analysis of stress regimes around an active fault zone, if the yielding stress is exceeded during loading, the localized shearing in a fault zone will result in weakness with mean stresses in the fault becoming lower than those in the surrounding rock. It can be expected that such stress gradients will induce fluid flow towards the faults zone.

  • PDF

Complexity Control Method of Chaos Dynamics in Recurrent Neural Networks

  • Sakai, Masao;Honma, Noriyasu;Abe, Kenichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.494-494
    • /
    • 2000
  • This paper demonstrates that the largest Lyapunov exponent $\lambda$ of recurrent neural networks can be controlled by a gradient method. The method minimizes a square error $e_{\lambda}=(\lambda-\lambda^{obj})^2$ where $\lambda^{obj}$ is desired exponent. The $\lambda$ can be given as a function of the network parameters P such as connection weights and thresholds of neurons' activation. Then changes of parameters to minimize the error are given by calculating their gradients $\partial\lambda/\partialP$. In a previous paper, we derived a control method of $\lambda$via a direct calculation of $\partial\lambda/\partialP$ with a gradient collection through time. This method however is computationally expensive for large-scale recurrent networks and the control is unstable for recurrent networks with chaotic dynamics. Our new method proposed in this paper is based on a stochastic relation between the complexity $\lambda$ and parameters P of the networks configuration under a restriction. Then the new method allows us to approximate the gradient collection in a fashion without time evolution. This approximation requires only $O(N^2)$ run time while our previous method needs $O(N^{5}T)$ run time for networks with N neurons and T evolution. Simulation results show that the new method can realize a "stable" control for larege-scale networks with chaotic dynamics.

  • PDF