• Title/Summary/Keyword: Gradient resistance

Search Result 178, Processing Time 0.025 seconds

Evaluation of Uncertainty Sources in Temperature Measurement Using Platinum Resistance Thermometer Caused by Temperature Gradient in Furnace and Sealed-type Freezing Point Cells (전기로 및 봉입형 응고점 셀 내의 온도구배가 미치는 표준백금저항온도계 온도측정의 불확도 요소 평가)

  • Kang, Kee-Hoon;Gam, Kee-Sool;Kim, Yong-Gyoo;Song, Chang-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.411-416
    • /
    • 2004
  • In the international temperature scale of 1990 (ITS-90), standard platinum resistance thermometer (SPRT) is a defining standard thermometer used in the temperature range from 13.8033 K to $961^{\circ}C$. Uncertainty of SPRT is about several mK and uncertainty of defining fixed points of the ITS-90 which is used for calibrating SPRT is about several tenth of mK. Above $0^{\circ}C$. the defining fixed points are gallium melting point and indium, tin, zinc, aluminium and silver freezing points which are all realized using an electric furnace or a liquid bath. To realize freezing point of tin ($231.928^{\circ}C$) and zinc ($419.527^{\cir}C$), two 3-zone furnaces which have 3 electric heaters were manufactured. Temperature gradient of the constructed furnaces were tested. Uncertainty caused by temperature gradient of furnace and immersion effect of SPRT in the sealed-type freezing point cells were evaluated 0.038 mK for tin freezing point and 0.036 mK for zinc freezing point.

Interfacial Properties of Gradient Specimen of CNT-Epoxy Nanocomposites using Micromechanical Technique and Wettability (미세역학적 실험법과 젖음성을 이용한 CNT-에폭시 나노복합재료 경사형 시편의 계면특성)

  • Wang, Zuo-Jia;GnidaKouong, Joel;Park, Joung-Man;Lee, Woo-Il;Park, Jong-Gyu
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.8-14
    • /
    • 2009
  • Interfacial evaluation of glass fiber reinforced carbon nanotube (CNT)-epoxy nanocomposite was investigated by micromechanical technique in combination with wettability test. The contact resistance of the CNT-epoxy nanocomposite was measured using a gradient specimen, containing electrical contacts with gradually-increasing spacing. The contact resistance of CNT-epoxy nanocomposites was evaluated by using the two-point method rather than the four-point method. Due to the presence of hydrophobic domains on the heterogeneous surface, the static contact angle of CNT-epoxy nanocomposite was about $120^{\circ}$, which was rather lower than that for super-hydrophobicity. For surface treated-glass fibers, the tensile strength decreased dramatically, whereas the tensile modulus exhibited little change despite the presence of flaws on the etched fiber surface. The interfacial shear strength (IFSS) between the etched glass fiber and the CNT-epoxy nanocomposites increased due to the enhanced surface energy and roughness. As the thermodynamic work of adhesion, $W_a$ increased, both the mechanical IFSS and the apparent modulus increased, which indicated the consistency with each other.

Stretchable Deformation-Resistance Characteristics of the Stiffness-Gradient Stretchable Electronic Packages Based on PDMS (PDMS 기반 강성도 경사형 신축 전자패키지의 신축변형-저항 특성)

  • Park, Dae Ung;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.47-53
    • /
    • 2019
  • Stiffness-gradient stretchable electronic packages of the soft PDMS/hard PDMS/PTFE structure were processed using the polydimethylsiloxane (PDMS) as the base substrate and the more stiff polytetrafluoroethylene (PTFE) as the island substrate, and their stretchable deformation-resistance characteristics were characterized. The flip-chip joints, formed by bonding the chip bumps of 50 ㎛-diameter onto the PDMS/PTFE substrate pads, exhibited an average contact resistance of 96 mΩ. When the stretchable package of the soft PDMS/hard PDMS/PTFE structure was deformed to 30% elongation, the strain on the PTFE was restrained to 1%, resulting in a negligible resistance increase of 1% in the daisy-chain circuit formed on the PTFE island substrate. The circuit resistance increased for 1.7% after 2,500 cycles of 0~30% stretchable deformation.

A Study on Thermal Shock Characteristics of Functionally Gradient Ceramic/Metal Composites (경사기능성 세라믹/ 금속 복합재료의 열충격특성에 관한 연구)

  • Song, Jun-Hee;Lim, Jae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2134-2140
    • /
    • 1996
  • This study was carried out to anlayze the heat-resistant characteristics of functionally gradient material(FGM) composed with ceramic and metal. The thermal fracture behavior of plasma-sprayed FGM and conventional coating material(NFGM) was exaimined by acoustic emession technique under heating and cooling. Furnace cooling and rapid cooling tests were used to examine the effect of temperature change under various conditions, respectively. At the high temperature above $800^{\circ}C$, it was shown that FGM gives higher thermal resistance compared to NFGM by AE signal and fracture surface analysis.

3-Dimensional Design of Gradient Coils for Magnetic Resonance Imaging (자기공명영상촬영용 경사자계코일의 3차원설계)

  • Ryu, Yeun-Chul;Hyun, Jung-Ho;Lee, Heung-K.;Oh, Chang-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.235-237
    • /
    • 2006
  • In this paper, the previous 2-D gradient coil design method using loop current elements is extended to 3-D or multi-layer structures which is useful for various MRI applications including MR microscopic imaging where relatively large space may be available for the implementation of the gradient coils. Either the power consumption or the stored energy (thus, inductance), or the combination of the two can be minimized with a set of chosen target field constraints. Complete 3-D design equations for the optimization as well as inductance or resistance calculation are derived. An effective coil shape correction method for a curved current pattern is also developed. The design method can also be easily extended to the active shielding structure.

  • PDF

Micro-PIV Measurements of interfacial electrokinetic effects in a microchannel (마이크로 PTV 기법을 이용한 미세채널 내부 계면의 electrokinetic 효과 해석)

  • Kim Guk-bae;Lee Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.49-50
    • /
    • 2002
  • In micro-channels, the electro-viscous effect is caused by the electrical double layer on pressure-driven liquid flow. Velocity fields of flow inside micro-channels were measured using micro-PIV system for investigating the electro-viscous effect. De-ionized water and aqueous NaCl solutions with four different concentrations were used as working fluid in a PDMS micro-channel of $100{\mu}m$ width and $66{\mu}m$ height. The pressure gradient, dP/dx, was determined from the pre-determined input flow rate Q of syringe pump. The mean velocity $u_m$ used for calculating Reynolds number was obtained from the PIV velocity field data. These are used to plot the pressure gradient as a function of Reynolds numbers. The pressure gradient far lower concentration solution $(10^{-5}\;M)$ was higher than that for the higher concentration solution. The increase of flow resistance was about $30\%\;and\;37.5\%$ at Re=0.02 and 0.06, respectively.

  • PDF

Model-based Gradient Compensation in Spiral Imaging (나선주사영상에서 모델 기반 경사자계 보상)

  • Cho, S.H.;Kim, P.K.;Lim, J.W.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.15-21
    • /
    • 2009
  • Purpose : A method to estimate a real k-space trajectory based on a circuit model of the gradient system is proposed for spiral imaging. The estimated k-space trajectory instead of the ideal trajectory is used in the reconstruction to improve the image quality in the spiral imaging. Materials and Methods : Since the gradient system has self resistance, capacitance, and inductance, as well as the mutual inductance between the magnet and the gradient coils, the generated gradient fields have delays and transient responses compared to the input waveform to the gradient system. The real gradient fields and their trajectory in k-space play an important role in the reconstruction. In this paper, the gradient system is modeled with R-L-C circuits, and real gradient fields are estimated from the input to the model. An experimental method to determine the model parameters (R, L, C values) is also suggested from the quality of the reconstructed image. Results : The gradient fields are estimated from the circuit model of the gradient system at 1.5 Tesla MRI system. The spiral trajectory obtained by the integration of the estimated gradient fields is used for the reconstruction. From experiments, the reconstructed images using the estimated trajectory show improved uniformity, reduced overshoots near the edges, and enhanced resolutions compared to those using the ideal trajectory without model. Conclusion : The gradient system was successfully modeled by the R-L-C circuits. Much improved reconstruction was achieved in the spiral imaging using the trajectory estimated by the proposed model.

  • PDF

Pre-buckling deflection effects on stability of thin-walled beams with open sections

  • Mohri, F.;Damil, N.;Potier-Ferry, M.
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.71-89
    • /
    • 2012
  • The paper investigates beam lateral buckling stability according to linear and non-linear models. Closed form solutions for single-symmetric cross sections are first derived according to a non-linear model considering flexural-torsional coupling and pre-buckling deformation effects. The closed form solutions are compared to a beam finite element developed in large torsion. Effects of pre-buckling deflection and gradient moment on beam stability are not well known in the literature. The strength of singly symmetric I-beams under gradient moments is particularly investigated. Beams with T and I cross-sections are considered in the study. It is concluded that pre-buckling deflections effects are important for I-section with large flanges and analytical solutions are possible. For beams with T-sections, lateral buckling resistance depends not only on pre-buckling deflection but also on cross section shape, load distribution and buckling modes. Effects of pre-buckling deflections are important only when the largest flange is under compressive stresses and positive gradient moments. For negative gradient moments, all available solutions fail and overestimate the beam strength. Numerical solutions are more powerful. Other load cases are investigated as the stability of continuous beams. Under arbitrary loads, all available solutions fail, and recourse to finite element simulation is more efficient.

A Study on Effect of Beachface Gradient on 3-D Currents around the Open Inlet of Submerged Breakwaters (해빈경사에 따른 잠제 개구부의 3차원적인 흐름특성에 관한 연구)

  • Lee, Woo-Dong;Hur, Dong-Soo;Park, Jong-Bae;An, Sung-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.7-15
    • /
    • 2009
  • The aim of this study was to survey the effects of the beachface gradient on 3-D currents around the open inlets of submerged breakwaters. First, the numerical model was validated by a comparison with existing experimental data. This model is able to consider the flow through a porous medium with inertial, laminar, and turbulent resistance terms, i.e. simulate directly WAve?Structure?Seabed/Sandy beach interaction, and can determine the eddy viscosity with a LES turbulent model in a 3-Dimensional wave field (LES-WASS-3D). Using the numerical results of this model, the 3-D currents around the open inlets of submerged breakwaters were examined in relation to the beachface gradient. Moreover, the wave height distribution and mean flow around them are also discussed, as well as the distribution of the wave breaking points over the crest.

A Sensorless Speed Control of 2-Phase Asymmetric SRM with Parameter Compensator (파라미터 보상기를 가지는 비대칭 SRM의 센서리스 속도제어)

  • Lim, Geun-Min;Ahn, Jin-Woo;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.238-245
    • /
    • 2012
  • This paper presents a sensorless speed control of a 2-phase switch reluctance motor(SRM). The proposed sensorless control scheme is based on the slide mode observer with parameter compensator to improve the estimation performance. In the stand still position, the initial rotor position is determined by pulse current responses of each phase windings and the current difference. In order to determine an accurate initial rotor position, the two initial rotor positions are estimated by the difference of the pulse currents. From the stand still to the operating region, a simple open loop control which determines the commutation sequence by the pulse current of the unexcited phase winding is used. When the motor speed is reached to the sensorless control region, the estimated rotor position and speed by the slide mode observer are used to control the SRM. The flux calculator used in the slide mode observer is designed by phase voltage and the voltage drops in the phase resistance of the winding. The accuracy of the flux calculator is dependent on the phase resistance. For the continuous update of the phase resistance, current gradient at the inductance break point is used in this paper. The error of the estimated rotor position at the current gradient position is used to update the phase resistance to improve the sensorless scheme. The proposed sensorless speed control scheme is verified with a practical compressor used in home appliances. And the results show the effectiveness of the proposed control scheme.