• Title/Summary/Keyword: Gradient force

Search Result 276, Processing Time 0.027 seconds

Structural Optimization of Active Vehicle Suspension Systems (능동형 차량 현가장치의 성능 향상을 위한 구조 최적화)

  • 김창동;정의봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1381-1388
    • /
    • 1993
  • This paper presents a method for the simultaneous optimal design of structural and control systems. Sensitivities of performance index with respect to structural design variables are analyzed. The structural design variables are optimized to minimize the performance index by use of conjugate gradient method. The method is applied to a half model of an active vehicle suspension system with elastic body moving on a randomly profiled road. The suspension control force of an optimally controlled system in the presence of measurement errors are calculated by use of linear quadratic Gaussian control theory and Kalman filter theory. The performance index contains ride comfort, road holding and working space of suspension. The structural design variables taken are stiffness, daming properties and the position of the suspension system. The random road profile considered as colored noise is shaped from white noise by use of shaping filter. The performance of an optimal simultaneous structure/control system is compared with that of an optimal controlled system.

Estimation of Superelevation in Mountainous River Bends (산지하천 만곡부의 편수위 산정)

  • Park, Sang Doeg;Lee, Seung Kyu;Shin, Seung Sook;Cho, Jaewoong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1165-1176
    • /
    • 2014
  • In a river bend the water surface is inclined by the centrifugal force toward the transverse section. If channel slope and flow rate increase, the gradient is rising generally. There are lots of the flood damage at the bends of mountain river because the flood water levels have exceeded frequently the levee levels which are added a free board to the design flood water level. Therefore the superelevation should be considered in designing the mountainous river bend. In present study it was proposed to estimate the superelevation at the bend of mountain river and the superelevation coefficient defined from multiplying the sub-factors. The values of the influence factors for the superelevation coefficient were suggested from analyzing the superelevation measured at the bends in Yangyangnamdae river and the hydraulic experiments in gravel-bed channel with a $90^{\circ}$ bend. The applicability of these methods to estimate the superelevation at the bends in mountain river was verified by the superelevation measured at the bend in Naerin river.

A Theoretical Study on the Characteristics of Fire Resistance for the Concrete Filled Tubular Steel Columns (콘크리트충전 강관기둥의 내화특성에 관한 이론적 연구)

  • Chung, Kyung Soo;Choi, Sung Mo;Kim, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.649-658
    • /
    • 1997
  • When steel tube as a column is filled with concrete, it is common that the load-bearing capacities of CFST(Concrete Filled Steel Tube) column are increased substantially, And the CFST column can obtain a capacity of fire resistance without any additional detail on the surface of the steel tube for fire protection. In order to clarify the behavior of CFST column during fire occurrence, a theoretical study is performed, that is, a thermal analysis is used to find temperature gradient dependent on the time on the steel tube and the infilled concrete. N-M (axial force-moment) interaction curves are summarized under the consideration for time dependent variation. The material properties of concrete and steel in accordance with a temperature variation are referred to the existing general data. Thermal transient analyses are performed by finite element method through ANSYS and then these results are verified by comparing with the existing test results. On the basis of analytical results, load-carrying capacities (N-M interaction curves) are calculated by numerical analysis method.

  • PDF

A Simple Theoretical Model for the Upwind Flow in the Southern Yellow Sea (황해남부의 역풍류에 대한 단순 이론 모델)

  • 박용향
    • 한국해양학회지
    • /
    • v.21 no.4
    • /
    • pp.203-210
    • /
    • 1986
  • A linear parallel transport model is formulated and applied to an idealized Yellow Sea, With this simple analytical model, the hither-to suspected upwind flow phenomena in the southern Yellow Sea can be reasonably explained. In deep waters where the local depth exceeds a critical depth (Hc=53m in the present model sea), pressure gradient force dominates over wind stress and contributes to an upwind flow. The estimated upwind flow velocity increases with wind speed and a maximum upwind flow occurs along the axis of the Yellow Sea embayment. For the typical south wind of 5-10 knots in summer, the upwind (southward) flow velocity along the axis of the Yellow Sea is estimated to be 1-5cm s$\^$-1/. While, for the typical north wind of 10-15 knots in winter, the upwind (northward) flow velocity is 5-12cm s$\^$-1/. These velocity ranges can be served as rough estimates for the intrusion velocity of the Yellow Sea Bottom Cold Water in summer and the Yellow Sea Warm Current in winter, respectively.

  • PDF

A Case Study of Heavy Snowfall with Thunder and Lightning in Youngdong Area (뇌전을 동반한 영동지역 대설 사례연구)

  • Kim, Hae-Min;Jung, Sueng-Pill;In, So-Ra;Choi, Byoung-Choel
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.187-200
    • /
    • 2018
  • The heavy snowfall phenomenon with thunder and lightning occurred in Yeongdong coastal region on 20 January 2017. Amount of snow on that day was a maximum of 47 cm and was concentrated in a short time (2 hours) at the Yeongdong coastal area. The mechanism of thundersnow was investigated to describe in detail using observational data and numerical simulation (Weather Research and Forecast, WRF) applied lightning option. The results show that a convective cloud occurred at the Yeongdong coastal area. The east wind flow was generated and the pressure gradient force was maximized by the rapidly developed cyclone. The cold and dry air in the upper atmosphere has descended (so called tropopause folding) atmospheric lower layer at precipitation peak time (1200 LST). In addition, latent heat in the lower atmosphere layer and warm sea surface temperature caused thermal instability. The convective cloud caused by the strong thermal instability was developed up to 6 km at that time. And the backdoor cold front was determined by the change characteristics of meteorological elements and shear line in the east sea. Instability indexes such as Total totals Index (TT) and Lightning Potential Index (LPI) are also confirmed as one of good predictability indicates for the explosive precipitation of convective rainfall.

Influencing Factors on Freezing Characteristics of Frost Susceptible Soil Based on Sensitivity Analysis (민감도 분석을 기반으로 한 시료의 동결 특성에 미치는 영향인자 분석)

  • Go, Gyu-Hyun;Lee, Jangguen;Kim, Minseop
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.49-60
    • /
    • 2020
  • A fully coupled thermo-hydro-mechanical model is established to evaluate frost heave behaviour of saturated frost-susceptible soils. The method is based on mass conservation, energy conservation, and force equilibrium equations, which are fully coupled with each other. These equations consider various physical phenomena during one-dimensional soil freezing such as latent heat of phase change, thermal conductivity changes, pore water migration, and the accompanying mechanical deformation. Using the thermo-hydro-mechanical model, a sensitivity analysis study is conducted to examine the effects of the geotechnical parameters and external conditions on the amount of frost heave and frost heaving rate. According to the results of the sensitivity analysis, initial void ratio significantly affects each objective as an individual parameter, whereas soil particle thermal conductivity and temperature gradient affect frost heave behaviour to a greater degree when applied simultaneously. The factors considered in this study are the main factors affecting the frost heaving amount and rate, which may be used to determine the frostbite sensitivity of a new sample.

Image Segmentation of Lung Parenchyma using Improved Deformable Model on Chest Computed Tomography (개선된 가변형 능동모델을 이용한 흉부 컴퓨터단층영상에서 폐 실질의 분할)

  • Kim, Chang-Soo;Choi, Seok-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2163-2170
    • /
    • 2009
  • We present an automated, energy minimized-based method for Lung parenchyma segmenting Chest Computed Tomography(CT) datasets. Deformable model is used for energy minimized segmentation. Quantitative knowledge including expected volume, shape of Chest CT provides more feature constrain to diagnosis or surgery operation planning. Segmentation subdivides an lung image into its consistent regions or objects. Depends on energy-minimizing, the level detail image of subdivision is carried. Segmentation should stop when the objects or region of interest in an application have been detected. The deformable model that has attracted the most attention to date is popularly known as snakes. Snakes or deformable contour models represent a special case of the general multidimensional deformable model theory. This is used extensively in computer vision and image processing applications, particularly to locate object boundaries, in the mean time a new type of external force for deformable models, called gradient vector flow(GVF) was introduced by Xu. Our proposed algorithm of deformable model is new external energy of GVF for exact segmentation. In this paper, Clinical material for experiments shows better results of proposal algorithm in Lung parenchyma segmentation on Chest CT.

Wind-excited stochastic vibration of long-span bridge considering wind field parameters during typhoon landfall

  • Ge, Yaojun;Zhao, Lin
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.421-441
    • /
    • 2014
  • With the assistance of typhoon field data at aerial elevation level observed by meteorological satellites and wind velocity and direction records nearby the ground gathered in Guangzhou Weather Station between 1985 and 2001, some key wind field parameters under typhoon climate in Guangzhou region were calibrated based on Monte-Carlo stochastic algorithm and Meng's typhoon numerical model. By using Peak Over Threshold method (POT) and Generalized Pareto Distribution (GPD), Wind field characteristics during typhoons for various return periods in several typical engineering fields were predicted, showing that some distribution rules in relation to gradient height of atmosphere boundary layer, power-law component of wind profile, gust factor and extreme wind velocity at 1-3s time interval are obviously different from corresponding items in Chinese wind load Codes. In order to evaluate the influence of typhoon field parameters on long-span flexible bridges, 1:100 reduced-scale wind field of type B terrain was reillustrated under typhoon and normal conditions utilizing passive turbulence generators in TJ-3 wind tunnel, and wind-induced performance tests of aero-elastic model of long-span Guangzhou Xinguang arch bridge were carried out as well. Furthermore, aerodynamic admittance function about lattice cross section in mid-span arch lib under the condition of higher turbulence intensity of typhoon field was identified via using high-frequency force-measured balance. Based on identified aerodynamic admittance expressions, Wind-induced stochastic vibration of Xinguang arch bridge under typhoon and normal climates was calculated and compared, considering structural geometrical non-linearity, stochastic wind attack angle effects, etc. Thus, the aerodynamic response characteristics under typhoon and normal conditions can be illustrated and checked, which are of satisfactory response results for different oncoming wind velocities with resemblance to those wind tunnel testing data under the two types of climate modes.

Probabilistic Assessment of Seepage Stability of Soil Foundation under Water Retaining Structures by Fragility Curves (취약도 곡선에 의한 수리구조물 하부 지반의 확률론적 침투 안정성 평가)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.41-54
    • /
    • 2021
  • In this study, probabilistic steady seepage behavior of soil foundation beneath water retaining structures according to the location of cutoffs was studied. A Monte Carlo Simulation based on the random finite element method that considers the uncertainty and spatial variability of soil permeability was performed to evaluate the probabilistic seepage behavior. Fragility curves were developed by calculating the failure probability conditional on the occurrence of a given water level from the probability distribution obtained from Monte Carlo simulations. The fragility curve was prepared for the flow quantities such as flow rate through foundation soil, uplift force on the base of structure, and exit gradient in downstream to examine the reliability of the water retaining structure and the foundation soil. From the fragility curves, the effect of the location of cutoff wall on the reliability of water retaining structure and foundation soil according to the rise in water level was studied.

Hysteresis Behavior in Electric Resistance-hydrogen Concentration of Pd Thin Films (Pd 박막의 전기저항-수소농도 이력현상)

  • Lee, Eunsongyi;Lee, Jun Min;Jeon, Kye Jin;Lee, Wooyoung
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.6
    • /
    • pp.372-377
    • /
    • 2009
  • We report on hysteresis behavior in the electrical resistance-hydrogen concentration of Pd thin films. The variation of the electrical resistance has been investigated during the process of absorption and desorption of hydrogen gas ($H_{2}$) as a function of thickness of Pd thin films. The hysteresis behavior in the electrical resistance with $H_{2}$ concentration was found for Pd thin films and consists of $\alpha$ phase, ${\alpha}+{\beta}$ phase, and $\beta$ phase regions. The sensitivity of Pd thin films with $H_{2}$ concentration was found to follow Sieverts' law in the $\alpha$ phase region. However, the sensitivity was observed to increase abruptly with $H_{2}$ concentration in the ${\alpha}+{\beta}$ phase co-exist region. This is because Pd-H interaction is stronger in the $\beta$ phase than in the $\alpha$ phase and needs a higher concentration gradient as a driving force to desorb. The formation of the $\beta$ phase also was observed to cause the structural change because of the lattice expansion during absorption. The hysteresis height and the trace of structural change were affected by the thickness of the Pd film. As the film becomes thinner, the hysteresis height becomes lower and the amount of delamination on the surface becomes smaller. For films thinner than 20 nm in thickness, the delamination was not found but electrical resistance hysteresis was still observed.