Hysteresis Behavior in Electric Resistance-hydrogen Concentration of Pd Thin Films

Pd 박막의 전기저항-수소농도 이력현상

  • Lee, Eunsongyi (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Jun Min (Department of Materials Science and Engineering, Yonsei University) ;
  • Jeon, Kye Jin (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Wooyoung (Department of Materials Science and Engineering, Yonsei University)
  • Received : 2008.12.22
  • Published : 2009.06.25

Abstract

We report on hysteresis behavior in the electrical resistance-hydrogen concentration of Pd thin films. The variation of the electrical resistance has been investigated during the process of absorption and desorption of hydrogen gas ($H_{2}$) as a function of thickness of Pd thin films. The hysteresis behavior in the electrical resistance with $H_{2}$ concentration was found for Pd thin films and consists of $\alpha$ phase, ${\alpha}+{\beta}$ phase, and $\beta$ phase regions. The sensitivity of Pd thin films with $H_{2}$ concentration was found to follow Sieverts' law in the $\alpha$ phase region. However, the sensitivity was observed to increase abruptly with $H_{2}$ concentration in the ${\alpha}+{\beta}$ phase co-exist region. This is because Pd-H interaction is stronger in the $\beta$ phase than in the $\alpha$ phase and needs a higher concentration gradient as a driving force to desorb. The formation of the $\beta$ phase also was observed to cause the structural change because of the lattice expansion during absorption. The hysteresis height and the trace of structural change were affected by the thickness of the Pd film. As the film becomes thinner, the hysteresis height becomes lower and the amount of delamination on the surface becomes smaller. For films thinner than 20 nm in thickness, the delamination was not found but electrical resistance hysteresis was still observed.

Keywords

Acknowledgement

Supported by : 과학재단, 서울시

References

  1. T. Graham, XVIII. Royal Society of London, 399 (1866)
  2. F. A. Lewis, The Palladium Hydrogen System, Academic Press (1967)
  3. S. Lomperski, M. Anselmi, and I. Huhtiniemi, Meas. Sci. Technol. 11, 518 (2000) https://doi.org/10.1088/0957-0233/11/5/311
  4. Daniel B. Wolfe, J. Christopher Love, Kateri E. Paul, Michael L. Chabinyc, and George M. Whitesides, Appl. Phys. Lett. 80, 2222 (2002) https://doi.org/10.1063/1.1463719
  5. Frederic Favier, Erich C. Walter, Michael P. Zach, Thorsten Benter, and Reginald M. Penner, Science 293, 2227 (2001) https://doi.org/10.1126/science.1063189
  6. T. Xu, M. P. Zach, Z. L. Xiao, D. Rosenmann, U. Welp, W. K. Kwok, and G. W. Crabtree, Appl. Phys. Lett. 86, 203104 (2005) https://doi.org/10.1063/1.1929075
  7. A. L. Cabrera and R. Aguayo-Soto, Catalysis Letters 45, 79 (1997) https://doi.org/10.1023/A:1019078419537
  8. A. Katsuki and K. Fukui, Sensors and Actuators B 52, 30 (1998) https://doi.org/10.1016/S0925-4005(98)00252-4
  9. K. I. Lundstrom, M. S. Shivaraman, and C. M. Svensson, J. Appl. Phys. 46, 3876 (1975) https://doi.org/10.1063/1.322185
  10. B. S. Kang, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton, Appl. Phys. Lett. 84, 1123 (2004) https://doi.org/10.1063/1.1648134
  11. M. Krishna Kumar, M. S. Ramachandra Rao, and S. Ramaprabhu, J. Phys. D: Appl. Phys. 39, 2791 (2006) https://doi.org/10.1088/0022-3727/39/13/023
  12. Kevin Luongo, Altagrace Sine, and Shekhar Bhansali, Sensors and Actuators B 111-112, 125 (2005) https://doi.org/10.1016/j.snb.2005.06.056
  13. Y. Sakamoto, K. Takai, I. Takashima, and M. Imada, J. Phys.: Condens. Matter 8, 3399 (1996) https://doi.org/10.1088/0953-8984/8/19/015
  14. Y. Sakamoto, and I. Takashima, J. Phys.: Condens. Matter 8, 10511 (1996) https://doi.org/10.1088/0953-8984/8/49/038
  15. Petra Fedtke, Marion Wienecke, Mihaela-C. Bunescu, Marlis Pietzak, K. Deistung, and Erika Borchardt, Sensors and Actuators B 100, 151 (2004) https://doi.org/10.1016/j.snb.2003.12.062
  16. J. W. Elam, A. Zinovev, C. Y. Han, H. H. Wang, U. Welp, J. N. Hryn, and M. J. Pellin, Thin Solid Films 515, 1664 (2006) https://doi.org/10.1016/j.tsf.2006.05.049
  17. Dongyan Ding, Zhi Chen, and Chi Lu, Sensors and Actuators B 120, 182 (2006) https://doi.org/10.1016/j.snb.2006.02.007
  18. F. Rahimi, A. Iraji zad, and F. Razi, Synthesis and Reactivity in Organic: Metal-Organic and Nano-Metal Chemistry 37, 377 (2007) https://doi.org/10.1080/15533170701392636
  19. R. C. Hughes, W. K. Schubert, and R. J. Buss, J. Electrochem. Soc. 142, 249 (1995) https://doi.org/10.1149/1.2043887
  20. R. C. Hughes, W. K. Schubert, T. E. Zipperian, J. L. Rodriguez, and T. A. Plut, J. Appl. Phys. 62, 1074 (1987) https://doi.org/10.1063/1.339738
  21. M. V. Goltsova, Yu. A. Artemenko, and V. I. Zaitsev, J. Alloys Compd. 293-295, 379 (1999) https://doi.org/10.1016/S0925-8388(99)00374-6
  22. Andreas Othonos, Kyriacos Kalli, and Din Ping Tsai, Applied Surface Science 161, 54 (2000) https://doi.org/10.1016/S0169-4332(00)00140-9
  23. R. Dus, R. Nowakowski, and E. Nowicka, J. Alloys Compd. 404-406, 284 (2005) https://doi.org/10.1016/j.jallcom.2004.12.165
  24. P. R. Cha, J. Y. Kim, H. K. Seok, and Y. C. Kim, J. Kor. Inst. Met. & Mater. 46, 296 (2008)
  25. A. K. M. Fazle Kibria and Y. Sakamoto, Mater. Sci. Eng. B 35, 256 (1998) https://doi.org/10.1016/S0921-5107(98)00151-2
  26. A. Chtanov and M. Gal, Sensors and Actuators B 79, 196 (2001) https://doi.org/10.1016/S0925-4005(01)00875-9
  27. M. Nicolas, L. Dumoulin, and J. P. Burger, J. Appl. Phys. 60, 3125 (1986) https://doi.org/10.1063/1.337724
  28. K. J. Jeon, M. H. Jeun, Eunsongyi Lee, J. M. Lee, Kyoung- Il Lee, Paul von Allmen, and W. Y. Lee, Nanotechnology 19, 495501 (2008) https://doi.org/10.1088/0957-4484/19/49/495501
  29. Constantinos Christofides and Andreas Mandelis, J. Appl. Phys. 68, R1 (1990) https://doi.org/10.1063/1.346398
  30. M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, Acta Mater. 52, 3151 (2004) https://doi.org/10.1016/j.actamat.2004.03.014