• 제목/요약/키워드: Gradient Thickness

검색결과 386건 처리시간 0.027초

수화된 규산소다의 열처리 온도에 따른 물성변화 (Characteristic Changes of the Hydrated Sodium Silicate Depending on Heat Treatment Temperature)

  • 공양표;조호연;서동수
    • 한국세라믹학회지
    • /
    • 제45권3호
    • /
    • pp.185-189
    • /
    • 2008
  • In order to fabricate porous ceramics, hydrated sodium silicate was synthesized by hydrothermal reaction using anhydrous sodium silicate. The microstructural and the structural characteristics of the expanded ceramics were observed depending on heat treatment temperature (550, 600, 650, $700^{\circ}C$) and then the effect of these characteristics on the compressive strength and the temperature gradient was investigated. As the heat treatment temperature was increased, the compressive strength was decreased from $0.717KN/cm^2\;(550^{\circ}C)\;to\;0.166KN/cm^2\;(700^{\circ}C)$. The temperature gradient was increased with increasing the experimental temperature regardless of the heat treatment temperature. The temperature gradient of the expanded ceramics which was heat treated at $650^{\circ}C\;was\;300^{\circ}C$. The bulk specific gravity, porosity, pore size, pore characteristics and wall thickness were varied depending on heat treatment temperature, and the compressive strength and the temperature gradient were governed by the complex effects of these factors.

Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.237-248
    • /
    • 2018
  • This study presents the investigation of wave dispersion characteristics of a magneto-electro-elastic functionally graded (MEE-FG) nanosize beam utilizing nonlocal strain gradient theory (NSGT). In this theory, a material length scale parameter is propounded to show the influence of strain gradient stress field, and likewise, a nonlocal parameter is nominated to emphasize on the importance of elastic stress field effects. The material properties of heterogeneous nanobeam are supposed to vary smoothly through the thickness direction based on power-law form. Applying Hamilton's principle, the nonlocal governing equations of MEE-FG nanobeam are derived. Furthermore, to derive the wave frequency, phase velocity and escape frequency of MEE-FG nanobeam, an analytical solution is employed. The validation procedure is performed by comparing the results of present model with results exhibited by previous papers. Results are rendered in the framework of an exact parametric study by changing various parameters such as wave number, nonlocal parameter, length scale parameter, gradient index, magnetic potential and electric voltage to show their influence on the wave frequency, phase velocity and escape frequency of MEE-FG nanobeams.

Development of gradient composite shielding material for shielding neutrons and gamma rays

  • Hu, Guang;Shi, Guang;Hu, Huasi;Yang, Quanzhan;Yu, Bo;Sun, Weiqiang
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2387-2393
    • /
    • 2020
  • In this study, a gradient material for shielding neutrons and gamma rays was developed, which consists of epoxy resin, boron carbide (B4C), lead (Pb) and a little graphene oxide. It aims light weight and compact, which will be applied on the transportable nuclear reactor. The material is made up of sixteen layers, and the thickness and components of each layer were designed by genetic algorithm (GA) combined with Monte Carlo N Particle Transport (MCNP). In the experiment, the viscosities of the epoxy at different temperatures were tested, and the settlement regularity of Pb particles and B4C particles in the epoxy was simulated by matlab software. The material was manufactured at 25 ℃, the Pb C and O elements of which were also tested, and the result was compared with the outcome of the simulation. Finally, the material's shielding performance was simulated by MCNP and compared with the uniformity material's. The result shows that the shielding performance of gradient material is more effective than that of the uniformity material, and the difference is most noticeable when the materials are 30 cm thick.

역해석을 이용한 구형 공간 내의 산란계수 추정에 관한 연구 (A Study on the Estimation of Scattering Coefficient in the Spheres Using an Inverse Analysis)

  • 김우승;곽동성
    • 대한기계학회논문집B
    • /
    • 제23권3호
    • /
    • pp.364-373
    • /
    • 1999
  • A combination of conjugate gradient and Levenberg-Marquardt method is used to estimate the spatially varying scattering coefficient, ${\sigma}(r)$, in the solid and hollow spheres by utilizing the measured transmitted beams from the solution of an inverse analysis. The direct radiation problem associated with the inverse problem is solved by using the $S_{12}-approximation$ of the discrete ordinates method. The accuracy of the computations increased when the results from the conjugate gradient method are used as an initial guess for the Levenberg-Marquardt method of minimization. Optical thickness up to ${\tau}_0=3$ is used for the computations. Three different values of standard deviation are considered to examine the accuracy of the solution from the inverse analysis.

Nondestructive Estimation of Average Wood Moisture Content Using Surface Temperature Rise by Radiation Heating and Moisture Gradient

  • Lee, Hyoung-Woo;Kim, Byung-Nam
    • Journal of the Korean Wood Science and Technology
    • /
    • 제27권4호
    • /
    • pp.38-42
    • /
    • 1999
  • Average moisture content of 30mm-thick Korean red pine(Pinus densiflora) was estimated nondestructively and continuously using surface temperature rise by radiation heating and moisture gradient profile in wood. The surface temperature rises increased as surface moisture contents decreased and good relationships were found between surface moisture contents and surface temperature rises at three different feed speeds of 10, 20 and 30 m/min. Average moisture content could be described as a function of surface moisture content and wood thickness.

  • PDF

Forced vibration response in nanocomposite cylindrical shells - Based on strain gradient beam theory

  • Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.381-388
    • /
    • 2018
  • In this paper, forced vibration of micro cylindrical shell reinforced by functionally graded carbon nanotubes (FG-CNTs) is presented. The structure is subjected to transverse harmonic load and modeled by beam model. The size effects are considered based on strain gradient theory containing three small scale parameters. The mixture rule is used for obtaining the effective material properties of the structure. Based on sinusoidal shear deformation theory of beam, energy method and Hamilton's principle, the motion equations are derived. Applying differential quadrature method (DQM) and Newmark method, the frequency curves of the structure are plotted. The effect of different parameters including, CNTs volume percent and distribution type, boundary conditions, size effect and length to thickness ratio on the frequency curves of the structure is studied. Numerical results indicate that the dynamic deflection of the FGX-CNT-reinforced cylindrical is lower with respect to other type of CNT distribution.

Analytical wave dispersion modeling in advanced piezoelectric double-layered nanobeam systems

  • Ebrahimi, F.;Haghi, P.;Dabbagh, A.
    • Structural Engineering and Mechanics
    • /
    • 제67권2호
    • /
    • pp.175-183
    • /
    • 2018
  • This research deals with the wave dispersion analysis of functionally graded double-layered nanobeam systems (FG-DNBSs) considering the piezoelectric effect based on nonlocal strain gradient theory. The nanobeam is modeled via Euler-Bernoulli beam theory. Material properties are considered to change gradually along the nanobeams' thickness on the basis of the rule of mixture. By implementing a Hamiltonian approach, the Euler-Lagrange equations of piezoelectric FG-DNBSs are obtained. Furthermore, applying an analytical solution, the dispersion relations of smart FG-DNBSs are derived by solving an eigenvalue problem. The effects of various parameters such as nonlocality, length scale parameter, interlayer stiffness, applied electric voltage, relative motions and gradient index on the wave dispersion characteristics of nanoscale beam have been investigated. Also, validity of reported results is proven in the framework of a diagram showing the convergence of this model's curve with that of a previous published attempt.

Dynamic analysis of a porous microbeam model based on refined beam strain gradient theory via differential quadrature hierarchical finite element method

  • Ahmed Saimi;Ismail Bensaid;Ihab Eddine Houalef
    • Advances in materials Research
    • /
    • 제12권2호
    • /
    • pp.133-159
    • /
    • 2023
  • In this paper, a size-dependent dynamic investigation of a porous metal foams microbeamsis presented. The novelty of this study is to use a metal foam microbeam that contain porosities based on the refined high order shear deformation beam model, with sinusoidal shear strain function, and the modified strain gradient theory (MSGT) for the first time. The Lagrange's principle combined with differential quadrature hierarchicalfinite element method (DQHFEM) are used to obtain the porous microbeam governing equations. The solutions are presented for the natural frequencies of the porous and homogeneoustype microbeam. The obtained results are validated with the analytical methods found in the literature, in order to confirm the accuracy of the presented resolution method. The influences of the shape of porosity distribution, slenderness ratio, microbeam thickness, and porosity coefficient on the free vibration of the porous microbeams are explored in detail. The results of this paper can be used in various design formetallic foammicro-structuresin engineering.

경사화 두께를 갖는 열차폐 코팅의 열적 내구성 평가 (Evaluation of Thermal Durability for Thermal Barrier Coatings with Gradient Coating Thickness)

  • 이승수;김준성;정연길
    • 한국산학기술학회논문지
    • /
    • 제21권8호
    • /
    • pp.248-255
    • /
    • 2020
  • 경사화 두께를 갖는 열차폐 코팅의 열적 내구성과 열적 안정성에 대한 코팅층 두께의 영향을 화염 열피로 시험과 열충격 시험을 통해서 조사하였다. Bond 층과 top 층은 각각 Ni-Cr계 상용 MCrAlY 분말과 상용 이트리아 안정화 지르코니아 (YSZ) 분말을 사용하여 니켈기지의 초내열합금 모재 (GTD-111)에 대기 플라즈마 용사법 (APS)으로 코팅층을 형성하였다. 1100 ℃의 화염으로 1429회 열피로 시험 후 bond 층이 일부 산화되고 top 층과 bond 층 계면에서 열화에 의한 산화층 (TGO)이 관찰되었으나, 코팅층 부위와 관계없이 균열이나 박리현상 없는 양호한 미세구조를 나타내었다. 1100 ℃ 열충격 시험결과, 37회 열충격 테스트 후 코팅층의 얇은 부위에서 박리가 시작되어 98회 시험 후 코팅층의 50% 이상이 박리되었으며, 코팅층의 두께가 얇게 형성된 부위는 코팅층이 두껍게 형성된 부위에 비해, top 층의 박리와 함께 bond 층의 산화가 많이 진행되었으며, 코팅층 두께가 상대적으로 두껍게 형성된 부위에서 열차폐 효과의 증가로 인해 bond 층의 내산화성과 열적 안정성이 우수한 것으로 나타났다.

마이크로 추진장치에 적용을 위한 누센수에 따른 열적발산원리의 효율분석 (Efficiency Analysis of Thermal Transpiration According to Knudsen Number for Application to Micro-propulsion System)

  • 정성철;허환일
    • 한국항공우주학회지
    • /
    • 제36권5호
    • /
    • pp.483-490
    • /
    • 2008
  • 마이크로 추진장치에서 노즐의 소형화는 많은 유동손실을 유발한다. 이러한 유동손실을 극복하기 위해 본 연구에서는 열적발산원리를 이용한 마이크로 추진장치에 대한 기초연구를 진행하였다. 움직이는 부품 없이 오직 온도구배만으로 추진제를 낮은 온도에서 높은 온도로 자체 펌핑이 가능한 열적발산장치를 설계, 제작 하였으며, 진공환경에서 누센수에 따른 맴브레인 압력구배효율을 분석하였다. 실험결과 천이영역에서는 두꺼운 맴브레인의 효율이 다소 높았으며, 자유분자영역에서는 두께에 관계없이 최대 압력구배 효율이 82%까지 증가하는 것을 확인할 수 있었다.