• Title/Summary/Keyword: Governor Valve

Search Result 20, Processing Time 0.041 seconds

Fault Detection of Governor Systems Using Discrete Wavelet Transform Analysis

  • Kim, Sung-Shin;Bae, Hyeon;Lee, Jae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.662-673
    • /
    • 2012
  • This study introduces a condition diagnosis technique for a turbine governor system. The governor system is an important control system to handle turbine speed in a nuclear power plant. The turbine governor system includes turbine valves and stop valves which have their own functions in the system. Because a turbine governor system is operated by high oil pressure, it is very difficult to maintain under stable operating conditions. Turbine valves supply oil pressure to the governor system for proper operation. Using the pressure variation of turbine and governor valves, operating conditions of the turbine governor control system are detected and identified. To achieve automatic detection of valve status, time-based and frequency-based analysis is employed. In this study, a new approach, wavelet decomposition, was used to extract specific features from the pressure signals of the governor and stop valves. The extracted features, which represent the operating conditions of the turbine governor system, include important information to control and diagnose the valves. After extracting the specific features, decision rules were used to classify the valve conditions. The rules were generated by a decision tree algorithm (a typical simple method for data-based rule generation). The results given by the wavelet-based analysis were compared to detection results using time- and frequency-based approaches. Compared with the several related studies, the wavelet transform-based analysis, the proposed in this study has the advantage of easier application without auxiliary features.

A Study on the Trouble of Turbine EHC System by Chloride (염소성분에 의한 터빈 EHC계통 손상에 관한 연구)

  • Kim, Seung Min;Yang, Cheon Gyu;Yoon, Gi Nam;Jung, Jae Won;Shin, Yeul Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.366-372
    • /
    • 2000
  • In a power plant, it is generally accepted that a turbine governor system is necessary to control amount of steam supply toward the turbine system. There are many kinds of trouble at this governor system, which is recognized one of the most sensitive systems in the power plant. Especially we have experienced the internal leakage of motorization oil of servo valve. In the study, we investigated the mechanism of an internal leakage such as erosion by foreign materials and corrosion by chemical reaction between chloric healed oil and motorization oil. A precautionary measures is also performed to help the field service engineers.

  • PDF

Failure Analysis of an Inlet Pipe of a Governor Valve in a Steam Turbine of a District Heating System (지역난방 증기 터빈 내 조속기 밸브 Inlet pipe 파손 원인 분석)

  • Chae, Hobyung;Kim, Woo Cheol;Kim, Heesan;Kim, Jung-Gu;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2022
  • The objective of this study was to perform failure analysis of an inlet pipe located in a governor valve of a steam turbine in a district heating system. During the operation, the temperature of the governor valve was increased to as high as ~500 ℃, which induced thermal expansion of the inlet pipe along both axial and radial directions. While the inlet pipe did not have contact with the valve seat, the side plane of the upside was constrained by the casing part, which led the inlet pipe to experience stress field in the form of fatigue and creep. The primary crack was initiated at about 30 mm below the top where the complex stress field was anticipated. These results suggest that the main failure mechanism is a combination of thermal fatigue and creep during the operation supported by the observation of apparent beach marks on the fracture surface and pores near the cracks, respectively.

Study on Optimization of Throttle Margin in High Pressure Turbine of Nuclear Power Plant (원자력 발전소 고압터빈의 교축여유(Throttle Margin) 최적화 연구)

  • Ko, W.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.43-49
    • /
    • 2010
  • In the present study, optimization of throttle margin for high pressure turbine to be retrofitted or partially modified for power uprating or life extension in nuclear power plant, has been performed to increase the electrical output. Throttle margin for high pressure turbine is required to maintain all the time the rated power by opening more of governor valves whenever inlet pressure is decreased due to the tube plugging of steam generator. If throttle margin of high pressure turbine is too much compared to remaining lifetime, loss of electrical output due to pressure drop of governor valves is inevitable. On the contrary, if it is too little, the rated power operation can not be accomplished when inlet pressure of high pressure turbine is dropped after many years operation. So, throttle margin for high pressure turbine in nuclear power plant is compromised considering for the degradation of steam generator, governor valve capacity, manufacturing tolerance of high pressure turbine, future plan of power uprating, and remaining lifetime of power plant.

The improvement of control strategy in thermal power plant turbine system by nonlinear analysis (비선형성 해석에 의한 화력발전소 터어빈 제어계통에 관한 연구)

  • ;;Hwang, Jae-Ho;Seo, Jin-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.567-571
    • /
    • 1989
  • This paper describes the improvement of thermal power plant turbine control system by analyzing nonlinear characteristics. The turbine control depends on the frequency variation and boiler condition. The nonlinearity of turbine control is the result of governor/valve properties, steam condition and boiler thermal unbalance. Nonlinear analysis is divided into two; main steam valve position - turbine output anal governor response. Of course, every analysis must be done on considering plant operating condition. In this paper, after analyzing turbine control nonlinearity by numerical method and actual results, the sensitive operating load which corresponds to frequency is proposed, on guarranteed boiler stability. This idea is implemented at Pyung Tack thermal power plant, and the practical results are showed.

  • PDF

Analysis of Control Valve Characteristics in a Steam Turbine (증기터빈에서의 제어밸브에 관한 특성 고찰)

  • Yook, Sim-Kyun;Sur, Jung-Surk;Cho, Chang-Ho;Choi, In-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.639-642
    • /
    • 1999
  • In this paper, we are going to explain the operation principles of steam control valve, governing equation of compressible and incompressible fluids and flow characteristic according to plug(disc) types. Governor and the relation of main steam pressure to flow and main steam will also be explained.

  • PDF

Development of Anti-disaster System for Natural Gas Governor Station Using Wire and/or Wireless Communication ($\cdot$무선 데이터 통신을 이용한 천연가스 정압소의 안전방재 시스템 개발)

  • Yoo Hui Ryong;Park Dae Jin;Koo Sung Ja;Park Seoung Soo;Rho Yong Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.17-23
    • /
    • 1999
  • The wire and/or wireless data communication system for anti-disaster system of natural gas governor station was developed. In oder to prevent accidents of governor station, the operator was replaced by RTU(Remote Terminal Unit) which gather and transmit safety situation of governor station. The database and MMI(Man Machine Interface) were also developed to analyze the situation of governor station. The data communication between server and RTU was designed to switch automatically from wire to wireless communication and vice versa when one of them failed communication. We also have developed the patrol car management system which was applied GPS(Global Position System)/GIS(Geometric Information System), and the earthquake detection/transmission system which was adopted three dimension acceleration sensor. When a earthquake may occur, the earthquake detection/transmission system monitors data such as PGA(Peak Ground Acceleration), Sl(Spectrum Intensity) and orders the emergency shutoff valve close immediately.

  • PDF

The Minimization of Generator Output Variations by Impulse Chamber Pressure Control during Turbine Valve Test (터빈 밸브시험 중 충동실 압력제어에 의한 발전기 출력변동 최소화)

  • Choi, In-Kyu;Kim, Jong-An;Park, Doo-Yong;Woo, Joo-Hee;Shin, Jae-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.152-159
    • /
    • 2010
  • This paper describes the actual application of a feedback control loop as a means for minimizing turbine impulse chamber pressure variation during the turbine steam valve tests at a 1,000 MW nuclear power plant. The chamber pressure control loop was implemented in the new digital control system which was installed as a replacement for the old analog type control system. There has been about 40MW of the generator output change during the steam valve tests, especially the high pressure governing valve tests, because the old control system had not the impulse chamber pressure control so the operators had to compensate steam flow drop manually. The process of each valve test consists of a closing process and an reopening process and the operators can make sure that the valves are in their sound conditions by checking the valves movement. The control algorithm described in this paper contributed to keep the change in megawatt only to 6MW during the steam valve tests. Thereby, the disturbance to reactor control was reduced, and the overall plant control system's stability was greatly improved as well.

A Study on Overspeed Control and Valve Position Control for Steam Turbine in Power Plants (증기터빈 밸브제어방식에 따른 과속도 제어 고찰)

  • Choi, In-Kyu;Woo, Joo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1661-1662
    • /
    • 2008
  • After steam turbines in power plant drives generator and maintains it at rated speed using high temperature and high pressure steam energy, they regulate the output of generator when synchronized in parallel with the power system. By the way, as the steam flow into turbine can not be reduced fast even though the electrical load is lost, the turbine gets into dangerous situation due to the increase of its speed. At this time, the duty of the turbine governor is "how to limit the speed within its overspeed trip setpoint and escape from danger." In order to implement this purpose, there are various ways different from valve position control. So, in this paper, the various methods for overspeed protection are introduced in comparison with valve position control.

  • PDF