• Title/Summary/Keyword: Governing factor

Search Result 345, Processing Time 0.025 seconds

A Fully Coupled Hydrogeomechanical Numerical Analysis of Rainfall Impacts on Groundwater Flow in Slopes and Slope Stability (사면 내의 지하수 유동과 사면의 안정성에 대한 강수 영향의 완전 연동된 수리지질역학적 수치 해석)

  • 김준모
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.5-16
    • /
    • 2002
  • A hydrogeomechanical numerical model is presented to evaluate rainfall impacts on groundwater flow in slopes and slope stability. This numerical model is developed based on the fully coupled poroelastic governing equations for groundwater flow in deforming variably saturated geologic media and the Galerkin finite element method. A series of numerical experiments using the model developed are then applied to an unsaturated slope under various rainfall rates. The numerical simulation results show that the overall hydromechanical slope stability deteriorates, and the potential failure nay initiate from the slope toe and propagate toward the slope crest as the rainfall rate increases. From the viewpoint of hydrogeology, the pressure head and hence the total hydraulic head increase as the rainfall rate increases. As a result, the groundwater table rises, the unsaturated zone reduces, the seepage face expands from the slope toe toward the slope crest, and the groundwater flow velocity increases along the seepage face. From the viewpoint of geomechanics, the horizontal displacement increases, and the vertical displacement decreases toward the slope toe as the rainfall rate increases. This may result from the buoyancy effect associated with the groundwater table rise as the rainfall rate increases. As a result, the overall deformation intensifies toward the slope toe, and the unstable zone, in which the factor of safety against shear failure is less than 1, becomes thicker near the slope toe and propagates from the slope toe toward the slope crest. The numerical simulation results also suggest that the potential tension failure is likely to occur within the slope between the potential shear failure surface and the ground surface.

The Response of a Single Pile and Pile Groups to Tunnelling Performed in Weathered Rock (풍화암에서 실시된 터널굴착으로 인한 단독말뚝 및 군말뚝의 거동)

  • Lee, Cheol Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.199-210
    • /
    • 2012
  • The effects of tunnelling in weak weathered rock on the behaviour of a pre-existing single pile and pile groups ($3{\times}3$ and $5{\times}5$ pile groups) above a tunnel have been studied by carrying out three-dimensional (3D) elasto-plastic numerical analyses. Numerical modelling of such effects considers the response of the single pile and pile groups in terms of tunnelling-induced ground and pile settlement as well as changes of the shear transfer mechanism at the pile-soil interface due to tunnelling. Due to changes in the relative shear displacement between the pile and the soil at the pile-soil interface with tunnel advancement, the shear stresses and axial pile force distributions along the pile change drastically. Based on the computed results, upward shear stresses are induced up to about Z/L=0.775 from the pile top, while downward shear stresses are mobilised below Z/L=0.775, resulting in a reduction in the axial pile force distribution with depth equivalent to a net increase in the tensile force on the pile. A maximum tensile force of about $0.36P_a$ developed on the single pile solely due to tunnelling, where $P_a$ is the service axial pile loading prior to tunnelling. The degree of interface shear strength mobilisation at the pile-soil interface was found to be a key factor governing pile-soil-tunnelling interaction. Overall it has been found that the larger the number of piles, the greater is the effect of tunnelling on the piles in terms of pile settlement, while changes of the axial pile forces for the piles in the groups are smaller than for a single pile due to the shielding effect. The reduction of apparent allowable pile capacity due to tunnelling-induced pile head settlement was significant, in particular for piles inside the groups.

Development of Radar Polygon Method : Areal Rainfall Estimation Technique Based on the Probability of Similar Rainfall Occurrence (Radar Polygon 기법의 개발 : 유사강우발생 확률에 근거한 면적강우량 산정기법)

  • Cho, Woonki;Lee, Dongryul;Lee, Jaehyeon;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.11
    • /
    • pp.937-944
    • /
    • 2015
  • This study proposed a novel technique, namely the Radar Polygon Method (RPM), for areal rainfall estimation based on radar precipitation data. The RPM algorithm has the following steps: 1. Determine a map of the similar rainfall occurrence of which each grid cell contains the binary information on whether the grid cell rainfall is similar to that of the observation gage; 2. Determine the similar rainfall probability map for each gage of which each grid cell contains the probability of having the rainfall similar to that of the observation gage; 3. Determine the governing territory of each gage by comparing the probability maps of the gages. RPM method was applied to the Anseong stream basin. Radar Polygons and Thiessen Polygons of the study area were similar to each other with the difference between the two being greater for the rain gage highly influenced by the orography. However, the weight factor between the two were similar with each other. The significance of this study is to pioneer a new application field of radar rainfall data that has been limited due to short observation period and low accuracy.

The Fundamental Characteristics for Mix Proportion of Multi-Component Cement (배합비에 따른 다성분계 시멘트의 기초특성)

  • Kim, Tae-Wan;Jeon, Jae-Woo;Seo, Min-A;Jo, Hyeon-Hyeong;Bae, Su-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.66-74
    • /
    • 2016
  • The aim of this research work is to investigate the mix proportion of multi-component cement incorporating ground granulated blast furnace(GGBFS), fly ash(FA) and silica fume(SF) as an addition to cement in ternary and quaternary combinations. The water-binder ratio was 0.45. In this study, 50% and 60% replacement ratios of mineral admixture to OPC was used, while series of combination of 20~40% GGBFS, 5~35% FA and 0~15% SF binder were used for fundamental characteristics tests. This study concern the GGBFS/FA ratio and SF contents of multi-component cement including the compressive strength, water absorptions, ultrasonic pulse velocity(UPV), drying shrinkage and X-ray diffraction(XRD) analysises. The results show that the addition of SF can reduce the water absorption and increase the compressive strength, UPV and drying shrinkage. These developments in the compressive strength, UPV and water absorption can be attributed to the fact that increase in the SF content tends basically to consume the calcium hydroxide crystals released from the hydration process leading to the formation of further CSH(calcium silicate hydrate). The strength, water absorption and UPV increases with an increase in GGBFS/FA ratios for a each SF contents. The relationship between GGBFS/FA ratios and compressive strength, water absorption, UPV is close to linear. It was found that the GGBFS/FA ratio and SF contents is the key factor governing the fundamental properties of multi-component cement.

Studies on the Rooting Ability of Cutting in Elder Berry(Sambucus canadiensis) (황금(黃金)포도나무(Elder berry)의 삽목시험(揷木試驗))

  • Park, Kyo Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.40 no.1
    • /
    • pp.43-50
    • /
    • 1978
  • The elder berry was known to the rich in natural food colour resources and used in as for making wine, confectionary, perfumes, natural food colour, making elder berry juice, jelly, jam and medicinal properties or oils. In the present study, wish was to find the effect of various factors on the success of the vegetative propagation of elder berry by means cutting in the exposed field and green house was carried out and those obtained results can be summarized as follows. 1. Cuttings with dormant cutting stocs in the polyethylen house with heating and water mist spray resulting 100 percent survival. And temperature and the relative humidity in which fraim during the cutting season were around $20{\sim}25^{\circ}C$ and 70-90% respectively and in case as more significant other of the 1% Level. 2. With five varieties tested, resulting 93.8 percent survival, The F. value is not significant. 3. With four organs of cutting stock tested resulting 57.5 percent survival on the cuttings with two knodes of dormant cutting stock served as better cutting stock than others. The F. value is more significantly 1% Level. 4. Dormand bud served as possible cutting stock was found to be 17.66 survival percentage. 5. Both earlier and later stage of germinated Leaves with soft wood cutting stock poor cuttings, and the degree of development of 15th June cutting stock was optimum stage on the principal factor governing the success of cutting in the soft wood cutting showing 54% survival. The F. value is more 1% Level significant.

  • PDF

Crack Spacing in RC Tension Members Considering Cover Thickness and Concrete Compressive Strength (피복두께와 콘크리트 강도를 고려한 철근콘크리트 인장부재의 균열간격)

  • Kim, Woo;Lee, Ki-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.193-202
    • /
    • 2018
  • This paper proposed a crack spacing calculation formulation which is an important parameter for calculating the crack width, that is the main factor for verification of serviceability limit states and durability performance evaluation of reinforced concrete members. The basic equation of average crack spacing is derived by considering the bond characteristics which is the governing equation for the analysis of cracking behavior in reinforced concrete members. In order to consider the effect of the cover thickness and concrete compressive strength, the crack spacing measured in 124 direct tensile tests performed by several researchers was analyzed and each coefficient was proposed. And, correlation analysis was performed from 80 specimen data where the maximum and average crack spacing were simultaneously measured, and a correlation coefficient that can easily predict the maximum crack spacing from the average crack spacing was proposed. The results of the proposed average crack spacing equation and maximum crack spacing correlation were compared with those current design code specification. The comparisons of proposed equations and the Korean design codes show that the proposed formulation for the average crack spacing and the maximum crack spacing improves the accuracy and reliability of prediction compared to the corresponding provisions of the Korean Concrete Structural Design Code and Korean Highway Bridge Design Code (Limit States Design).

Geochemical Composition of Surface Sediments from the Saemangeum Tidal Flat, West Coast of Korea (새만금 조간대 표층퇴적물의 성분원소 함량과 지화학적 특성)

  • Cho, Yeong-Gil;Ryu, Sang-Ock;Khu, Yeong-Kyeong;Kim, Joo-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.1
    • /
    • pp.27-34
    • /
    • 2001
  • To investigate the processes governing the distribution of elements in the tidal flat, thirty-eight sediment samples collected from the Saemangeum tidal flat of the Korean west coast were analyzed for their contents of major (Al, Fe, Mg, Ca, Na, K, Ti) and trace (P, Mn, Ba, Sr, V, Cr, Co, Cu, Ni, Zn, Pb) elements. Most elements showed generally lower contents compared to data published for other tidal flats of Korea, and the effect of anthropogenic input could not be recognized in the sediments. The relative abundance and distribution of most of the elements varied significantly with the grain size of sediments. High contents of Al, Fe, Mg, Ti, P, Mn, V, Co, Cr, Cu, Ni and Zn were found in the finer sediments in the upper tidal flat of the study area, suggesting that tidal sedimentation processes play an important role in controlling the distribution of these elements. However, sediment grain size does not impose any significant effect on the abundance and distribution of Ca, Na, K, Ba, Sr and Pb. It appears that the clastic mineralogy in the coarse-grained fractions is the dominant factor determining the distribution of these elements in the study area.

  • PDF

Structure and Physical Properties of Earth Crust Material in the Middle of Korean Peninsula(4) : Development Status of Groundwater and Geological Characteristics in Chungnam Province (한반도 중부권 지각물질의 구조와 물성연구(4) : 충남도 지하수 개발 현황과 지질특성)

  • 송무영;신은선
    • The Journal of Engineering Geology
    • /
    • v.4 no.2
    • /
    • pp.153-168
    • /
    • 1994
  • The status of groundwater development in Chungnam was studied with geological characteristics according to the measured data of Korean Rural Development Corporation. The data of 212 survey wells were used for the relation between catchment area and water discharge, and the data of 344 development wells for the relationships between well depth and discharge, between casing depth and discharge, between rock type and discharge, and the relation with lineaments density. The relationship between the catchment area and discharge does not show any special trend, and it is understood that groundwater of hard rock mass is not so much influenced by the surface catchment area. The relationship between well depth and discharge shows two different trends; discharge increasing with depth for alluvial groundwater, but no certain trend between depth and discharge for groundwater of hard rock zone. Discharge increases linearly with the casing depth, and it is reliable because the casing was installed in the weathered zone against well destruction. Generally the rock type does not show any difference of discharge, but the crystalline rocks such as granite and gneiss yield a little more discharge than the more porous rocks such as sedimentary rock or schist. It suggests that the effect of fracture zone is a major governing factor. In Hongsong and Puyo, there are similar in rock type and casing depth, but the big difference in average discharge. The big discharge of Hongsong is concordant with the higher intersection density and longer length of lineament in Hongsong than those of Puyo. Therefore the groundwater development strategy should be focused on the micro topography analysis and geophysical survey for the understanding of the fracture zone rather than catchment area or rock type.

  • PDF

Heat Transfer Characteristics for Inward Solidification in a Horizontal Cylinder Packed with P.C.M. (상변화물질을 충전한 수평원통관 내에서 응고시 열전달특성)

  • Yum, Sung-Bae;Hong, Chang-Shik;Lee, Chai-Sung
    • Solar Energy
    • /
    • v.11 no.2
    • /
    • pp.51-62
    • /
    • 1991
  • Heat transfer characteristics for heat retrieving processes in a paraffin-filled horizontal circular cylinder was studied. Theoretical and experimental analyses were carried out. In the theoretical analysis, solid and liquid phases were treated separately. Namely, convection for liquid and conduction for solid phase were investigated respectively. The retrieved heat was calculated from the experimentally determined solidified mass. Furthermore, the effects of initial temperature of the liquid and cooling temperature on the heat discharge rate were also studied. In the heat retrieving process, the governing factor for the solidifying rate is the cooling temperature, because most of the liquid sensible heat is rapidly discharged in the initial stage of solidification. Hence heat transfer mechanism during heat retrieving process can be safely considered as conduction. In the cut of frozen paraffin, there showed an empty space in the upper region. It is caused by the temperature drop in the liquid paraffin. While volume shrinkage caused by phase transition was indiscernible. Irrespective of cooling temperature and initial liquid temperature, solidified mass was well-correlated with the product of Fourier number and Stefan number in the solid phase.

  • PDF

Accelerated DNA Adduct Formation in the Lung of the Nrf2 Knockout Mouse Exposed to Diesel Exhaust

  • Aoki, Yasunobu;Sato, Hiromi;Nishimura, Noriko;Takahashi, Satoru;Itoh, Ken;Yamamoto, Masayuki
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2002.05a
    • /
    • pp.36-42
    • /
    • 2002
  • Diesel exhaust (DE) has been recognized as a noxious mutagen and/or carcinogen, because its components can form DNA adducts. Mechanisms governing the susceptibility to DE and the efficiency of such DNA adduct formation require clarification. The transcription factor Nrf2 is essential for inducible and/or constitutive expression of a group of detoxification and antioxidant enzymes, and we hypothesized that the nrf2 gene knockout mouse might serve as an excellent model system for analyzing DE toxicity. To address this hypothesis, lungs from nrf2(-/-) and nrf2(+/-) mice were examined for the production of xenobiotic-DNA adducts after exposure to DE (3 $mg/m^{3}$ suspended particulate matter) for 4 weeks. Whereas the relative adduct levels (RAL) were significantly increased in the lungs of both nrf2(+/-) and nrf2(-/-) mice upon exposure to DE, the increase of RAL in the lungs from nrf2(-/-) mice exposed to DE were approximately 2.3-fold higher than that of nrf2(+/-) mite exposed to DE. In contrail, cytochrome P4501Al mRNA levels in the nrf2(-/-)mouse lungs were similar to those in the nrf2(+/-) mouse lungs even after exposure to DE, suggesting that suppressed activity of phase II drug-metabolizing enzymes is important in giving ise to the increased level of DNA adducts in the Nrf2-null mutant mouse subjected to DE. Importantly, severe hyperplasia and accumulation of the oxidative DNA adduct 8-hydroxydeoxyguanosine were observed in the bronchial epidermis of nrf(-/-) mite following DE exposure. These results demonstrate the increased susceptibility of the nrf2 germ line mutant mouse to DE exposure and indicate the nrf2 gene knockout mouse nay represent a valuable model for the assessment of respiratory DE toxicity.

  • PDF