• Title/Summary/Keyword: Google Index

Search Result 69, Processing Time 0.025 seconds

Forecasting Unemployment Rate using Social Media Information (소셜 미디어 정보를 이용한 실업률 예측)

  • Na, Jonghwa;Kim, Eun-Sub
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.6
    • /
    • pp.95-101
    • /
    • 2013
  • Social media has many advantages. It can gain latest information with real time, be spread rapidly, easily be reproduced and distributed regardless of its form. These advantages can result in real time predictions using the latest information, which is possible due to the increase in social demand for more quick and accurate economic variable predictions. In this paper we adopted ARIMAX and ECM model to predict the unemployment rate and as a social information we used the Google Index provided by Google Trend. Also we used News Index as a domestic social information. The process of fitting statistical model considered in this paper can be adopted to predict various socio/economic indices as well as unemployment rate.

Oil Spill Monitoring in Norilsk, Russia Using Google Earth Engine and Sentinel-2 Data (Google Earth Engine과 Sentinel-2 위성자료를 이용한 러시아 노릴스크 지역의 기름 유출 모니터링)

  • Minju Kim;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.311-323
    • /
    • 2023
  • Oil spill accidents can cause various environmental issues, so it is important to quickly assess the extent and changes in the area and location of the spilled oil. In the case of oil spill detection using satellite imagery, it is possible to detect a wide range of oil spill areas by utilizing the information collected from various sensors equipped on the satellite. Previous studies have analyzed the reflectance of oil at specific wavelengths and have developed an oil spill index using bands within the specific wavelength ranges. When analyzing multiple images before and after an oil spill for monitoring purposes, a significant amount of time and computing resources are consumed due to the large volume of data. By utilizing Google Earth Engine, which allows for the analysis of large volumes of satellite imagery through a web browser, it is possible to efficiently detect oil spills. In this study, we evaluated the applicability of four types of oil spill indices in the area of various land cover using Sentinel-2 MultiSpectral Instrument data and the cloud-based Google Earth Engine platform. We assessed the separability of oil spill areas by comparing the index values for different land covers. The results of this study demonstrated the efficient utilization of Google Earth Engine in oil spill detection research and indicated that the use of oil spill index B ((B3+B4)/B2) and oil spill index C (R: B3/B2, G: (B3+B4)/B2, B: (B6+B7)/B5) can contribute to effective oil spill monitoring in other regions with complex land covers.

Development of a Web-based Geovisualization System using Google Earth and Spatial DBMS (구글어스와 공간데이터베이스를 이용한 웹기반 지리정보 표출시스템 개발)

  • Im, Woo-Hyuk;Lee, Yang-Won;Suh, Yong-Cheol
    • Spatial Information Research
    • /
    • v.18 no.4
    • /
    • pp.141-149
    • /
    • 2010
  • One of recent trends in Web-based GIS is the system development using FOSS (Free and Open Source Software). Open Source software is independent from the technologies of commercial software and can increase the reusability and extensibility of existing systems. In this study, we developed a Web-based GIS for interactive visualization of geographic information using Google Earth and spatial DBMS(database management system). Google Earth Plug-in and Google Earth API(application programming interface) were used to embed a geo-browser in the Web browser. In order to integrate the Google Earth with a spatial DBMS, we implemented a KML(Keyhole Markup Language) generator for transmitting server-side data according to user's query and converting the data to a variety of KML for geovisualization on the Web. Our prototype system was tested using time-series of LAI(leaf area index), forest map, and crop yield statistics. The demonstration included the geovisualization of raster and vector data in the form of an animated map and a 3-D choropleth map. We anticipate our KML generator and system framework will be extended to a more comprehensive geospatial analysis system on the Web.

Pre-clinical Models and Exercise Effects for Sarcopenia and Frailty (근감소증과 노쇠의 전임상 모델 및 운동 효과)

  • Jee, Hyunseok;Huh, Jung Bin;Kim, Jong-Hee
    • 한국체육학회지인문사회과학편
    • /
    • v.58 no.4
    • /
    • pp.423-433
    • /
    • 2019
  • The purpose of this review is to summarize current knowledge regarding animal sarcopenia and frailty models and their diagnosis indexes. In addition, we introduce the effects of exercise interventions on sarcopenia and frailty syndrome. Data collection and analysis (fifteen published articles from 2005~2017) were conducted by using keywords' sarcopenia index, frailty index, exercise and mice, and so on' in academic search engines such as Google scholar and Pubmed. Sarcopenia and frailty are the representative syndromes in elderly peoples which those symptoms can be effectively prevented or delayed by extremely adjusted long term exercise interventions (The combined oxidative and resistant exercise program might be ideal.).

Predicting the Unemployment Rate Using Social Media Analysis

  • Ryu, Pum-Mo
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.904-915
    • /
    • 2018
  • We demonstrate how social media content can be used to predict the unemployment rate, a real-world indicator. We present a novel method for predicting the unemployment rate using social media analysis based on natural language processing and statistical modeling. The system collects social media contents including news articles, blogs, and tweets written in Korean, and then extracts data for modeling using part-of-speech tagging and sentiment analysis techniques. The autoregressive integrated moving average with exogenous variables (ARIMAX) and autoregressive with exogenous variables (ARX) models for unemployment rate prediction are fit using the analyzed data. The proposed method quantifies the social moods expressed in social media contents, whereas the existing methods simply present social tendencies. Our model derived a 27.9% improvement in error reduction compared to a Google Index-based model in the mean absolute percentage error metric.

Does the Rise of the Korean Wave Lead to Cosmetics Export?

  • Park, Young-Seaon
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.2 no.4
    • /
    • pp.13-20
    • /
    • 2015
  • The purpose of this research is to identify the relation between the Korean wave and Korean cosmetics export. Instead of using UN COMTRADE data as with other researches on the similar studies, this paper adopts Google Trends query index with keyword 'Korean drama'as a proxy variable for cultural trade. With controlling export determining factors such as GDPs of import and export countries, distance, R&D, and FTA, this paper examines whether the Korean wave represented by Google Trends contributes to the explosive increase of Korean cosmetics export in the recent years. Moreover, this study also investigates the possible effects of the Korean wave on export that could vary according to the different trade groups by classifying import countries into two groups: 74 countries worldwide and 9 ASEAN member countries. The results reveal that the Korean wave indeed leads to cosmetics export to ASEAN countries but show weak relation with cosmetics export to worldwide.

THE LAND COVER MAPPING IN NORTH KOREA USING MODIS IMAGE;THE CLASSIFICATION ACCURACY ENHANCEMENT FOR INACCESSIBLE AREA USING GOOGLE EARTH

  • Cha, Su-Young;Park, Chong-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.341-344
    • /
    • 2007
  • A major obstacle to classify and validate Land Cover maps is the high cost of generating reference data or multiple thematic maps for subsequent comparative analysis. In case of inaccessible area such as North Korea, the high resolution satellite imagery may be used as in situ data so as to overcome the lack of reliable reference data. The objective of this paper is to investigate the possibility of utilizing QuickBird (0.6m) of North Korea obtained from Google Earth data provided thru internet. Monthly NDVI images of nine months from the summer of 2004 were classified into L=54 cluster using ISODATA algorithm, and these L clusters were assigned to 7 classes; coniferous forest, deciduous forest, mixed forest, paddy field, dry field, water and built-up area. The overall accuracy and Kappa index were 85.98% and 0.82, respectively, which represents about 10% point increase of classification accuracy than our previous study based on GCP point data around North Korea. Thus we can conclude that Google Earth may be used to substitute the traditional in situ data collection on the site where the accessibility is severely limited.

  • PDF

The Utilization of Google Earth Images as Reference Data for The Multitemporal Land Cover Classification with MODIS Data of North Korea

  • Cha, Su-Young;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.483-491
    • /
    • 2007
  • One of the major obstacles to classify and validate Land Cover maps is the high cost of acquiring reference data. In case of inaccessible areas such as North Korea, the high resolution satellite imagery may be used for reference data. The objective of this paper is to investigate the possibility of utilizing QuickBird high resolution imagery of North Korea that can be obtained from Google Earth data via internet for reference data of land cover classification. Monthly MODIS NDVI data of nine months from the summer of 2004 were classified into L=54 cluster using ISODATA algorithm, and these L clusters were assigned to 7 classes - coniferous forest, deciduous forest, mixed forest, paddy field, dry field, water, and built-up areas - by careful use of reference data obtained through visual interpretation of the high resolution imagery. The overall accuracy and Kappa index were 85.98% and 0.82, respectively, which represents about 10% point increase of classification accuracy than our previous study based on GCP point data around North Korea. Thus we can conclude that Google Earth may be used to substitute the traditional reference data collection on the site where the accessibility is severely limited.

A study on automated soil moisture monitoring methods for the Korean peninsula based on Google Earth Engine (Google Earth Engine 기반의 한반도 토양수분 모니터링 자동화 기법 연구)

  • Jang, Wonjin;Chung, Jeehun;Lee, Yonggwan;Kim, Jinuk;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.615-626
    • /
    • 2024
  • To accurately and efficiently monitor soil moisture (SM) across South Korea, this study developed a SM estimation model that integrates the cloud computing platform Google Earth Engine (GEE) and Automated Machine Learning (AutoML). Various spatial information was utilized based on Terra MODIS (Moderate Resolution Imaging Spectroradiometer) and the global precipitation observation satellite GPM (Global Precipitation Measurement) to test optimal input data combinations. The results indicated that GPM-based accumulated dry-days, 5-day antecedent average precipitation, NDVI (Normalized Difference Vegetation Index), the sum of LST (Land Surface Temperature) acquired during nighttime and daytime, soil properties (sand and clay content, bulk density), terrain data (elevation and slope), and seasonal classification had high feature importance. After setting the objective function (Determination of coefficient, R2 ; Root Mean Square Error, RMSE; Mean Absolute Percent Error, MAPE) using AutoML for the combination of the aforementioned data, a comparative evaluation of machine learning techniques was conducted. The results revealed that tree-based models exhibited high performance, with Random Forest demonstrating the best performance (R2 : 0.72, RMSE: 2.70 vol%, MAPE: 0.14).

Search-based Sentiment and Stock Market Reactions: An Empirical Evidence in Vietnam

  • Nguyen, Du D.;Pham, Minh C.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.5 no.4
    • /
    • pp.45-56
    • /
    • 2018
  • The paper aims to examine relationships between search-based sentiment and stock market reactions in Vietnam. This study constructs an internet search-based measure of sentiment and examines its relationship with Vietnamese stock market returns. The sentiment index is derived from Google Trends' Search Volume Index of financial and economic terms that Vietnamese searched from January 2011 to June 2018. Consistent with prediction from sentiment theories, the study documents significant short-term reversals across three major stock indices. The difference from previous literature is that Vietnam stock market absorbs the contemporaneous decline slower while the subsequent rebound happens within a day. The results of the study suggest that the sentiment-induced effect is mainly driven by pessimism. On the other hand, optimistic investors seem to delay in taking their investment action until the market corrects. The study proposes a unified explanation for our findings based on the overreaction hypothesis of the bearish group and the strategic delay of the optimistic group. The findings of the study contribute to the behavioral finance strand that studies the role of sentiment in emerging financial markets, where noise traders and limits to arbitrage are more obvious. They also encourage the continuous application of search data to explore other investor behaviors in securities markets.