• Title/Summary/Keyword: Golgi membrane

Search Result 117, Processing Time 0.029 seconds

Integumental Secretory Cells in Goldfish, Carassius auratus L. (금붕어(Carassius auratus L.) 체표 분비세포에 관한 연구)

  • Jeong, Yeoun-Kyoung;Moon, Myung-Jin
    • Applied Microscopy
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 1994
  • The integumental secretory structure is exocrine unicellular gland located in the epidermis of goldfish, Carassius auratus, and divided into two groups, mucous and granular cells. By the histochemical studies of integumental secretions the mucos cells reacted for acidic polysaccharides, and the granular cells for neutral glycoprotein. According to concentration of the secretion the integumental mucous are gradually sulphated. The mucous cells are typical form of goblet cell located in the upper region of the epidermis, and membrane bounded vesicles of the mucous are observed several size and electron densities by the cellular differentiation. The granular cells in middle and lower epidermis are present syncitial forms occasionally, and contain electron dense granules sized $1.0{\mu}m$ which are accumulated in cytoplasmic process held the cells to the basal lamina. The precursors of the integumental secretory materials are originated from the rough endoplasmic reticulum and next transported through the Golgi apparatus as a form of membrane bounded vesicles. After accomplish this process mature secretions are extruded to integumental surface by the mechanism of merocrine secretion in response to nerve stimulations respectively.

  • PDF

Electron microscopy study on the change of Paneth cells of rat after irradiation (방사선 조사가 흰쥐의 Paneth 세포 변화에 대한 전자현미경적 연구)

  • Kim, Jung-Sam;Chung, Ji-Sook;Chung, Kyung-A;Roh, Young-Bok
    • Applied Microscopy
    • /
    • v.25 no.2
    • /
    • pp.20-28
    • /
    • 1995
  • This study observes the change of small intestine mucosa paneth cell by changing the amount of radiation to rat. It uses the rat(Wistar) of 250-300g as the experimental animal and irradiation equipment is Gammacell 3000Elan System. and the irradiation is conducted for 500Rad group for 34sec., 1000rad for 68sec., and 1500Rad for 102sec. once on the whole body of each group, eachgroup is anesthetized with ether after 24hours. its small intestine is extrated and then it is observed by transmission electronic microscopy. The experimental results are as follows : 1. 500 Rad Group The Slightly elongated form of mitochondria and rough endoplasmic reticulum are observed in 500 Rad group. 2. 1000 Rad Group Golgi apparatus is appeared as the extended plasmodium, secretory granules exist only external membrane due to the self-fusion, the number of mitochondria that are changed as L-type are reduced, rough endoplasmic reticulum is distributed with the expanded form. 3. 1500 Rad Group The number of Golgi apparatus and granules is remarkably reduced, mitochondria is changed into C-type and free ribosomes can be observed instead of the reduction of rough endoplasmic reticulum.

  • PDF

Changes of Endoplasmic Reticulum of Rat Intestinal Epithelium Induced by Ethionine Feeding (Ethionine 투여로 인한 소장흡수상피세포의 소포체변화)

  • Kim Poong-Taek;Sohn Tae-Joong
    • Applied Microscopy
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 1973
  • The author studied ed the effect of ethionine upon the absorption epithelium of ileum with particular ettention to the endoplasmic reticulum. Five tenth per cent of DL-ethionine was added to the diet of the experimental group rats and they were sacrificed after 1, 2, 3, and 4 weeks. respectively. The ileum were observed by the electron microscope. The results obtained were summarized as follow: The changes were detachment of membrane bound ribosome, dilatation of endoplasmic reticulum, decrease of polysome with reciprocal increase of monosome, and dilatation of Golgi complex. These changes were occured at 2 nd to 3 rd week from start of ethionine feeding and more severe at fouth week. These observation suggested that ethionine induced degenerative changes of the organelles.

  • PDF

The Cutaneous Xanthophore Differentiation in Bombina orientalis (무당개구리(Bombina orientalis Boulenger)皮膚 黃色素細胞(Xanthophore)의 分化에 관한 硏究)

  • 문명진;김우갑;김창환
    • The Korean Journal of Zoology
    • /
    • v.29 no.4
    • /
    • pp.261-271
    • /
    • 1986
  • The cutaneous xanthophore differentiation from larvae to adult in Bombina orientalis-the Korean fire bellied toad-is studied with light and electron microscopes. General structure of adult xanthophore which is composed of many pterinosomes and a small quantity of carotenoid vesicles is forming chromatophore complex with other dermal pigment cells. And the cytoplasmic process of xanthophore is distributed just beneath the basement membrane. The first differentiated xanthophore is originated from both rER rich cells and Golgi complex rich cells before and after the feeding larval stage. Formation of the pigment granule is proceeded gradually along the sequental metamorphic stages. After the metamorphosis, rapid multiplication of pterinosome is observed and enlargement of carotenoid vesicle is appeared after hybernation. These pigment granules are seen several structures by the differentiated level.

  • PDF

Fine Structure of Neurons and Synaptic Organization in Pallidum of the Cat (고양이 담창구 (Globus Pallidus)의 신경원과 연접기구에 대한 미세구조)

  • Park, W.B.;C.Y. Yun
    • The Korean Journal of Zoology
    • /
    • v.26 no.2
    • /
    • pp.107-123
    • /
    • 1983
  • The globus pallidus of normal cats were prepared for electron microscopic study following perfusion with a mixture of 1% paraformaldehyde and 1% glutaraldehyde solution. Neurons of two size categories were identified in 1 $\\mu$m araldite sections and their ultrastructural characteristics were studied in adjacent thin section. 1. Large neurons ($30 \\mum \\times 45 \\mum$ in diameter) had extensive areas of rough surfaced endoplasmic reticulm, abundant perinuclear Golgi complex, numerous mitochondria and lipofusin granule, and had a large spherical nucleus with shallow indentation of nuclear manbrane. Small neurons ($17 \\mum \\times 27 \\mum$ in diameter) had poorly rough surfaced endoplasmic reticulum, moderate number of mitochondria and randomly distributed Golgi complex. The nuclear envelope of this cell frequently showed multiple deep invagination. 2. Three types of axo-somatic synapses were identified on the basis of the size and shape of vesicle in the axon terminal and the symmetrical or asymmetrical thickening at the synaptic site. Type I synaptic terminal shows an even distribution of round and oval synaptic vesicles, and has a symmetrical synaptic thickening. Type II axon terminals reveal mostly round and pleomorphic vesicles and a few vesicles were localized near the presynaptic membrane in pale axoplasm and its synaptic thickening were symmetric. Type III axon terminals contain round vesicles, which were aggregated in the axoplasm, and has a asymmetrical synaptic thickening. 3. The majority of axo-somatic contact with the large and small neurons were type I, and type II and III synapes were rare.

  • PDF

Proteomic profiles and ultrastructure of regenerating protoplast of Bryopsis plumosa (Chlorophyta)

  • Klochkova, Tatyana A.;Kwak, Min Seok;Kim, Gwang Hoon
    • ALGAE
    • /
    • v.31 no.4
    • /
    • pp.379-390
    • /
    • 2016
  • When a multinucleate cell of Bryopsis plumosa was collapsed by a physical wounding, the extruded protoplasm aggregated into numerous protoplasmic masses in sea water. A polysaccharide envelope which initially covered the protoplasmic mass was peeled off when a cell membrane developed on the surface of protoplast in 12 h after the wounding. Transmission electron microscopy showed that the protoplasmic mass began to form a continuous cell membrane at 6 h after the wounding. The newly generated cell membrane repeated collapse and rebuilding process several times until cell wall developed on the surface. Golgi bodies with numerous vesicles accumulated at the peripheral region of the rebuilding cell at 24 h after the wounding when the cell wall began to develop. Several layers of cell wall with distinctive electron density developed within 48-72 h after the wounding. Proteome profile changed dramatically at each stage of cell rebuilding process. Most proteins, which were up-regulated during the early stage of cell rebuilding disappeared or reduced significantly by 24-48 h. About 70-80% of protein spots detected at 48 h after the wounding were newly appeared ones. The expression pattern of 29 representative proteins was analyzed and the internal amino acid sequences were obtained using mass spectrometry. Our results showed that a massive shift of gene expression occurs during the cell-rebuilding process of B. plumosa.

Study of Counter Diffusion in Isostatic Permeameters

  • Bianchi, F.;Pegoraro, M.;Zanderighi, L.
    • Korean Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.39-50
    • /
    • 2001
  • The counter-diffusion of two gaseous substances permeating a polymeric membrane has been investigated both experimentally and theoretically. The aim of the study was to find mutual effects, if any, that could influence the permeability and diffusivity data. The experimental data were obtained with an isostatic permeameter operating at ambient pressure and 303 K: helium, nitrogen, carbon dioxide methane were used as permeating gas at different partial pressure; helium or nitrogen as equilibrating or carrier gas. No evident mutual effect of the counter-diffusing gas was observed. The theoretical analysis gave some insight into the phenomena and it was concluded that at near-atmospheric pressures, and in the absence of swelling phenomena no mutual interaction exists. On a theoretical basis any mutual interaction between diffusing and counter-diffusing gases could only occur: i) at high pressures , when the free movement of permeating gas molecules within the polymer is hindered by the counter-diffusing gas; ii) when a large part of the free volume fraction is occupied by the counter--diffusing gas; iii) swelling phenomena modify the structure and free volume fraction of the polymer.

  • PDF

Comparative Ultrastructure of the Acinar Cell and Secretory Granules of Parotid Salivary Gland in the Lesser White-toothed Shrew, Crocidura suaveolens and the Big White-toothed Shrew, C. lasiura (작은땃쥐 Crocidura suaveolens와 우수리땃쥐 C. lasiura의 이하선 선세포와 분비과립의 미세구조 비교)

  • Jeong, Soon-Jeong;Jeong, Moon-Jin
    • Applied Microscopy
    • /
    • v.35 no.4
    • /
    • pp.91-97
    • /
    • 2005
  • The acinar cells and secretory granules of the parotid salivary gland were examined in the lesser white toothed shrew, Crocidura suaveolens and the big white-toothed shrew, C. lasiura. The parotid gland of both species were a serous gland having only one kind of serous acinar cells, and had conventional arrangement of acini and intercalated, granular and striated ducts. In case of C. suaveolens, serous acinar cells had well developed rER, prominent Golgi complex, several large mitochondria and abundant moderate dense secretory granules with various stages of the maturing or fusing process. Immature acinar secretory granules were only or mainly filled with fine strong dense specks and had an indistinct limiting membrane, and mature granules were filled with homogeneous pale large round center and had fine strong dense specks at the periphery of the homogeneous pale center and a distinct limiting membrane. In case of C. lasiula, serous acinar cells had well developed rER, prominent Golgi complex, several large mitochondria and abundant dense secretory granules with maturing or fusing process. Immature acinar secretory granules were only filled with pale rough specks and had an indistinct limiting membrane, and mature granules were only filled with rough dense specks and had a distinct limiting membrane. Eventually The acinar secretory granules of C. suaveolens were seen moderate at the light and ultrastuctural level, those of C. lasiura were strong dense at the light microscopic level and dense at the ultrastructural level.

Studies on the Fine Structures of Mouse Oocyte Whose Maturation has been suppressed in Vitro by Dibutyryl Cyclic AMP (Dibutyryl Cyclic AMP에 의해 成熟이 抑制된 Mouse 卵子의 微細構造에 관한 硏究)

  • 崔林淳
    • The Korean Journal of Zoology
    • /
    • v.18 no.2
    • /
    • pp.87-101
    • /
    • 1975
  • Electron microscopic studies on the ultrastructure of the mouse oocyte were made to investigate the inhibition of germinal vesicle breakdown by dibutyryl cAMP. The nuclear membrane of the dibutyryl cAMP-treated oocyte is characterized by a decreased degree of folding, maintains the normal double membrane structure, and shows an increased occurrence of the nuclear pore. It is suggested that these may be related to the suppression of the maturation of oocytes at the germinal vesicle. Mitochondria in the control cell were shown to be spread evenly throughout the cytoplasm and structurally underdeveloped or transitionary having little cristae development. On the contrary, mitochondria in the treated oocyte were found to be localized mainly around the nucleus and to show a greater extent of cristae development. The oocyte treated with dibutyryl cAMP appears to have fewer and structurally simpler lysosomes as compared to the control. The Golgi complex in the control oocyte exhibits the typical granular and lamellar structure, whereas that in the treated cell is poorly developed. Many multivesicular bodies, tonofilaments, and free ribosomes were observed in the control as well as in treated cells. The microvilli become structurally irregular, and a development of the perivitelline space is apparent in the treated oocyte. It is concluded that there is no basic difference in the ultrastructure between the oocytes treated with dibutyryl cAMP for 24 hours in the medium and those collected directly from the follicle. However, the finding that dibutyryl cAMP induces a development of more pores along the nuclear membrane strongly suggests the possibility that this compound inhibits the maturation of oocytes by influencing the permeability of the nuclear membrane.

  • PDF

Cell Differentiation and Ultrastructure of the Seminiferous Epithelium in Myotis macrodactylus (큰발웃수염박쥐 (Myotis macrodactylus)의 정상피세포의 분화와 미세구조)

  • Lee, Jung-Hun
    • Applied Microscopy
    • /
    • v.33 no.1
    • /
    • pp.25-39
    • /
    • 2003
  • Cell differentiation and ultrastructural characteristics in the seminiferous epithelium of Myotis macrodactylus was investigated with the light and electron microscopes. Spermatogenesis has begun at April and finished at September. The nuclei of A spermatogonia (dark and pale type of spermatogonia) were oval, applied to the basal lamina, and surrounded by Sertoli cells. By comparison with other types of spermatogonia, the cell and nucleus of B type of spermatogonium is globular and larger than A types of spermatogonia. The nucleolus appears as a coarse and touches the nuclear membrane. The cell and nucleus of spermatocytes was globular and larger, but primary spematocyte is larger than secondary spermatocyte. Spermiogenesis was divided according to the level of fine structural difference, into Golgi, cap, acrosomal, maturation and spermiation phases; Golgi, cap, acrosomal and spermiation phases were further subdivided into steps of early and late phase respectively, and maturation phase has only one step. Hence, the spermiogenesis has been divided into a total of nine phases. In the change of karyoplasm, the chromatin granules are condensed at late Golgi phase and completed at spermiation phase. The sperm tail began to develop in early Golgi phase and completed in spermiation phase. The process of degeneration of spermatogenic cells in the seminiferous tubules was continually observed from October, before the beginning of hibernation, to hibernation phase (November, December, January, February, March). Immatured spermatogenic cells in the seminiferous tubules have been engulfed by phagocytosis of Sertoli cells during period of degeneration. It is deduced that the adaptative strategy serves as the mechanism to regulate the effective use of energy to prepare for long hibernation and regulation of breeding cycle.